라틴어 문장 검색

& FCf recta ipsam tangens in C. Fingatur autem corpus C nunc progredi ab A ad K per lineam illam ACK, nunc vero regredi per eandem lineam;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 62:4)
& in progressu impediri a Medio, in regressu aeque promoveri, sic ut in iisdem locis eadem semper sit corporis progredientis & regredientis velocitas.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 62:5)
AEqualibus autem temporibus describat corpus progrediens arcum quam minimum CG, & corpus regrediens arcum Cg;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 62:6)
& impulsus quo corpus regrediens urgetur est ut hf ÷ fg.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 63:3)
Sed impulsus corporis regredientis & resistentia progredientis ipso motus initio aequantur, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 63:4)
Nam partes corporis tremuli vicibus alternis eundo & redeundo, itu suo urgebunt & propellent partes Medii sibi proximas, & urgendo compriment easdem & condensabunt;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 14:2)
Igitur quoties corpus tremulum pergit in partem quamcunque, Medium cedendo perget per circulum ad partes quas corpus relinquit, & quoties corpus regreditur ad locum priorem, Medium inde repelletur & ad locum suum priorem redibit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 15:5)
Ideoque aequales & correspondentes pulsuum correspondentium partes, itus & reditus suos per spatia contractionibus & dilatationibus proportionalia, cum velocitatibus quae sunt ut spatia, simul peragent:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 36:8)
& propterea pulsus, qui tempore itus & reditus unius latitudinem suam progrediendo conficiunt, & in loca pulsuum proxime praecedentium semper succedunt, ob aequalitatem distantiarum, aequali cum velocitate in Medio utroque progredientur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 36:9)
Estque tempus itus & reditus unius in ratione composita ex ratione dimidiata materiae & ratione dimidiata spatii, atque adeo ut spatium.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 37:8)
Pulsus autem temporibus itus & reditus unius eundo latitudines suas conficiunt, hoc est, spatia temporibus proportionalia percurrunt;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 37:9)
& propterea E[epsilon], F[phi], G[gamma] erunt ipsis PL, PM, PN in itu punctorum, vel ipsis Pn, Pm, Pl in punctorum reditu, aequales respective.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:4)
Unde [epsilon][gamma] in itu punctorum aequalis erit EG - LN, in reditu autem aequalis EG + ln.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:5)
Sed [epsilon][gamma] latitudo est seu expansio partis Medii EG in loco [epsilon][gamma], & propterea expansio partis illius in itu, est ad ejus expansionem mediocrem ut EG - LN ad EG;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:6)
erit expansio partis EG in loco [epsilon][gamma] ad expansionem mediocrem quam habet in loco suo primo EG, ut {OP × BC ÷ Z} - IM ad OP × BC ÷ Z in itu, utque {OP × BC ÷ Z} + im ad OP × BC ÷ Z in reditu.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:9)

SEARCH

MENU NAVIGATION