라틴어 문장 검색

tum angulum Z, cujus tangens sit ad Radium ut rectangulum sub umbilicorum distantia SH & semiaxium differentia AO - OD ad triplum rectangulum sub OQ semiaxe minore & AO - ¼L differentia inter semiaxem majorem & quartam partem lateris recti.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 29:6)
& propterea summa omnium rectangulorum in circulo toto ad summam totidem maximorum, ut area circuli totius ad rectangulum sub circumferentia tota & radio;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 11:9)
occurrentia in H & I. Secetur tangens in A, ita ut sit HA ad AI, ut est rectangulum sub media proportionali inter BH & HD & media proportionali inter CG & GP, ad rectangulum sub media proportionali inter PI & IC & media proportionali inter DG & GB, & erit A punctum contactus.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 57:4)
dico quod si Circuli & Hyperbolae diametris parallelae rectae per conjugatarum diametrorum terminos ducantur, & velocitates sint ut segmenta quaedam parallelarum a dato puncto ducta, Tempora erunt ut arearum Sectores, rectis a centro ad segmentorum terminos ductis abscissi:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 17:2)
rectangulum a + o in c - a - o seu ac - aa - 2ao + co - oo aequale est rectangulo b in DG, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 75:3)
D data cum velocitate vel sursum vel deorsum projiciatur, & detur lex vis centripetae, invenietur velocitas ejus in alio quovis loco e, erigendo ordinatam eg, & capiendo velocitatem illam ad velocitatem in loco D ut est latus quadratum rectanguli PQRD area curvilinea DFge vel aucti, si locus e est loco D inferior, vel diminuti, si is superior est, ad latus quadratum rectanguli solius PQRD, id est ut [sqrt]{PQRD + vel - DFge} ad [sqrt]PQRD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 45:3)
Etenim, ex Conicis, sunt hc quadratum ad rectangulum ahb, & ic quadratum ad id quadratum, & ke quadratum ad kd quadratum, & el quadratum ad alb rectangulum in eadem ratione, & propterea hc ad latus quadratum ipsius ahb, ic ad id, ke ad kd & el ad latus quadratum ipsius alb sunt in dimidiata illa ratione, & composite, in data ratione omnium antecedentium hi & kl ad omnes consequentes, quae sunt latus quadratum rectanguli ahb & recta ik & latus quadratum rectanguli alb.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 73:7)
Secentur rectae hi, ik, kl in c, d & e, ita ut sit hc ad latus quadratum rectanguli ahb, ic ad id, & ke ad kd ut est summa rectarum hi & kl ad summam trium linearum quarum prima est recta ik, & alterae duae sunt latera quadrata rectangulorum ahb & alb:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 73:5)

SEARCH

MENU NAVIGATION