라틴어 문장 검색

Est igitur tempus quo corpus in Medio resistente cadendo velocitatem AP acquirit, ad tempus quo velocitatem maximam AC in spatio non resistente cadendo acquirere posset, ut Sector ADT ad triangulum ADC:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 56:2)
Et sumendo Sectorem ADT vel ADt ad triangulum ADC in ratione temporum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 57:8)
resistentia ut medii densitas & quadratum velocitatis conjunctim:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 60:2)
Proinde (per Lem. X. Lib. I.) lineola FG est ut vis gravitatis & quadratum temporis conjunctim, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 62:14)
÷ FG conjunctim;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 64:7)
Sed velocitatis decrementum, tempore sibi reciproce proportionali, quo data spatii particula DdeE describitur, est ut resistentia & tempus conjunctim, id est directe ut summa duarum quantitatum, quarum una est velocitas, altera ut velocitatis quadratum, & inverse ut velocitas;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 11:3)
Igitur decrementum tam velocitatis quam lineae GD, est ut quantitas data & quantitas decrescens conjunctim, & propter analoga decrementa, analogae semper erunt quantitates decrescentes:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 11:5)
Igitur velocitas AP est ad velocitatem quam corpus tempore EDT, in spatio non resistente, ascendendo amittere vel descendendo acquirere posset, ut area trianguli DAP ad aream sectoris centro D, radio DA, angulo ADT descripti;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 26:2)
in Medio resistente est ut triangulum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 26:5)
ubi quam minima est, accedit ad rationem aequalitatis, pro more Sectoris & Trianguli.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 26:7)
& ob similia triangula PVQ, PSO, fit PQ ad ½VQ ut OP ad ½OS.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:20)
} ut resistentia, id est in ratione densitatis Medii in P & ratione duplicata velocitatis conjunctim.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:22)
Sed & ob similia triangula Fmf, Fhg, FDC, est fm ad Fm seu Dd, ut CD ad DF, & ex aequo Fg ad Dd ut DK ad DF.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:14)
hoc est in ratione resistentiae, adeoque est ut longitudo aB & resistentia conjunctim.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 50:4)
Proindeque rectangulum sub Aa & ½aB est ut aB & resistentia conjunctim, & propterea Aa ut resistentia. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 50:5)

SEARCH

MENU NAVIGATION