라틴어 문장 검색

Descensus primus 1 2 4 8 16 32 64 Ascensus ultimus 7/8 7/4 3-1/2 7 14 28 56 Numerus Oscillat.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 86:1)
Descensus primus 1 2 4 8 16 32 64 Ascensus ultimus 3/4 1-1/2 3 6 12 24 48 Numerus Oscillat.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 87:1)
arcus ascensu ultimo post oscillationes quinque ab eodem nodo descriptus, 28 dig.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 89:4)
Ejus pars decima seu differentia inter descensum & ascensum in oscillatione mediocri 2/5 dig.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 89:7)
& arcuum descensu & subsequente ascensu descriptorum differentia 0,4475 diminueretur in ratione velocitatis, adeoque evaderet 0,4412.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 89:12)
Ergo si pendulum describeret arcum totum 124-3/31 digitorum, & longitudo ejus inter punctum suspensionis & centrum oscillationis esset 126 digitorum, differentia arcuum descensu & subsequente ascensu descriptorum foret 1,509 dig.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 89:15)
Rursus ubi pendulum superius ex Globo ligneo constructum, centro oscillationis, quod a puncto suspensionis digitos 126 distabat, describebat arcum totum 124-3/31 digitorum, differentia arcuum descensu & ascensu descriptorum fuit 126/121 in 8 ÷ 9-2/3 seu 25/29, quae ducta in pondus Globi, quod erat unciarum 57-7/22, producit 48,55.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 89:17)
Arcus ascensu ultimo 48 24 12 6 3 1-1/2 3/4 3/8 3/16 descriptus digitorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 93:1)
Arcus descensu primo descriptus 16 8 4 2 1 1/2 1/4 Arcus ascensu ultimo descriptus.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 100:1)
Nam corpora longe velocissima spatium a tergo relinquent vacuum, ideoque resistentia quam sentiunt in partibus praecedentibus, nullatenus minuetur per pressionem Medii in partibus posticis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 101:6)
Pressio non propagatur per Fluidum secundum lineas rectas, nisi ubi particulae Fluidi in directum jacent.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 2:1)
Si jaceant particulae a, b, c, d, e in linea recta, potest quidem pressio directe propagari ab a ad e;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 4:1)
at particula e urgebit particulas oblique positas f & g oblique, & particulae illae f & g non sustinebunt pressionem illatam, nisi fulciantur a particulis ulterioribus h & k;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 4:2)
& hae non sustinebunt pressionem nisi fulciantur ab ulterioribus l & m easque premant, & sic deinceps in infinitum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 4:4)
Pressio igitur, quam primum propagatur ad particulas quae non in directum jacent, divaricare incipiet & oblique propagabitur in infinitum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 4:5)

SEARCH

MENU NAVIGATION