라틴어 문장 검색

quippe quarum ratio ultima, angulis illis DPE, dpe simul evanescentibus, est aequalitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 8:9)
Hae duae rationes dimidiatae componunt rationem aequalitatis, & propterea attractiones in I & P a Sphaera tota factae aequantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 102:3)
& Conorum particulae Sphaeroidum superficiebus abscissae DHKF, GLIE, ob aequalitatem linearum DH, EI, erunt ad invicem ut quadrata distantiarum suarum a corpusculo P, & propterea corpusculum illud aequaliter trahent.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 40:11)
Et solidi pars LGloKO, planis parallelis lGL, oKO terminata, corpusculum C in medio situm nullam in partem trahet, contrariis oppositorum punctorum actionibus se mutuo per aequalitatem tollentibus.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 48:3)
Atqui areae Hyperbolicae KNOL ad rectangulum KL × KN ratio ultima, ubi coeunt puncta K & L, est aequalitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 40:12)
Nam ratio prima nascentium kl + [sqrt]FG × kl & FG + kl est aequalitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 65:7)
Unde cum 2HF & Cf - CF aequentur, & FG & kl (ob rationem aequalitatis) componant 2FG;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 66:2)
ubi quam minima est, accedit ad rationem aequalitatis, pro more Sectoris & Trianguli.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 26:7)
adeoque, ubi V & AP quam minimae sunt, in ratione aequalitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 35:11)
Unde cum spatia in Medio utroque, in principio descensus vel fine ascensus simul descripta accedunt ad aequalitatem, adeoque tunc sunt ad invicem ut area BD × V^2 ÷ 4AB & arearum DET & AKNb differentia;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 35:13)
erit ratio aequalitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 2:6)
nam punctis P & Q coeuntibus, ratio ultima SP - SP^½ × SQ^½ ad ½VQ fit aequalitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:11)
Cedendo autem urgebit latus oppositum, & sic pressio undique ad aequalitatem verget.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 12:4)
reducetur pressio undique ad aequalitatem in momento temporis absque motu locali;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 12:6)
hoc est gravitati solidi cujus ultima ratio ad Cylindrum praefinitum, (si modo Orbium augeatur numerus & minuatur crassitudo in infinitum, sic ut actio gravitatis a superficie infima ad supremam continua reddatur) fiet ratio aequalitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 17:11)

SEARCH

MENU NAVIGATION