라틴어 문장 검색

Si ergo numerus alium intra se numerum habens eius duas partes habuerit, superbipartiens nominatur, sin vero tres, supertripartiens, quodsi iiij, superquadripartiens, atque ita progredientibus in infinitum fingere nomina licet.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 2:3)
habet enim quinarius totos in se tres et eorum duas partes id est duo. Si vero ad secundum ordinem speculatio referatur, supertripartiens proportio cognoscetur atque ita in sequentibus per omnes dispositos numeros omnes in infinitum species huius numeri convenientes ordinatasque respicies.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 5:2)
At vero quemadmodum singuli procreentur si in infinitum quis curet agnoscere, hic modus est. Habitudo enim superbipartientis, si utrisque terminis duplicetur, semper superbipartiens proportio procreatur.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:1)
Et hos ipsos rursus si duplicaveris, idem ordo proportionis adcrescit, idemque si infinitum facias, statum prioris habitudinis non mutabit.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:3)
Quodsi superquadripartientes quemadmodum in infinitum progrediantur, appetas addiscere, primas eorum radices in quadruplum multiplices licet, id est viiij et v et eos, qui illa multiplicatione proferentur, rursus in quadruplum, et eandem fieri proportionem inoffensa nimirum ratione repperies;
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:6)
qui dicitur supertripartiens, is sit supertriquartus, et qui dicitur superquadripartiens, idem dicatur superquadriquintus, eademque similitudine usque in infinitum nomina producantur.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 7:5)
Magnus quippe in hac scientia fructus est, si quis non nesciat, quod bonitas definita et sub scientiam cadens animoque semper imitabilis et perceptibilis prima natura est et suae substantiae decore perpetua, infinitum vero malitiae dedecus est, nullis propriis principiis nixum, sed natura semper errans a boni definitione principii tamquam aliquo signo optimae figurae inpressa componitur et ex illo erroris fluctu retinetur.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:2)
Hoc igitur cum in terminis aequalibus feceris, ex his qui nascentur, duplices erunt, de quibus duplicibus si idem feceris, triplices procreantur et de his quadruplices atque in infinitum omnes formas numeri multiplicis explicabit.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:13)
Ac si quis idem de cunctis in infinitum partibus multiplicitatis faciat, convenienter ordinem superparticularitatis inveniet.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 28:1)
Ac de his quidem hactenus disserendum esse credidimus, ne vel infinita sectemur, vel circa res obscurissimas ingredientium animos detinentes ab utilioribus moraremur.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 57:4)
Primus ergo duplex unum solum habebit sesqualterum, secundus duo, tertius tres, quartus quattuor et secundum hunc ordinem eadem fit in infinitum progressio, neque unquam fieri potest, ut vel superet proportionum numerum vel ab eo sit deminutior aequabilis ab unitate locatio.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 2:3)
at in quadrupla quadrupli atque hoc in infinita ductum speculatione non fallit.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 23:5)
Ad hunc modum infinita progressio est, omnesque ex ordine trianguli aequilateri procreabuntur, primum omnium ponenti quod ex unitate nascitur ut haec vi sua triangulus sit, non tamen etiam opere atque actu.
(보이티우스, De Arithmetica, Liber secundus, De lateribus triangulorum numerorum. 1:1)
quarti vero, id est xv, quinarius latus tenet, et quinti senarius idemque est usque in infinitum.
(보이티우스, De Arithmetica, Liber secundus, De lateribus triangulorum numerorum. 1:8)
Omnis enim multorum angulorum forma ex sui generis figura unitati superposita ab uno ingredientibus ad pyramidum constituendas figuras usque in infinita progreditur et ex hoc equidem apparere necesse est, triangulas formas ceterarum figurarum esse principium, quod omnis pyramis a quacunque basi profecta vel a quadrato, vel a pentagono, vel ab exagono, vel ab eptagono vel a quocunque similium solis triangulis usque ad verticem continetur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 7:2)

SEARCH

MENU NAVIGATION