라틴어 문장 검색

Liquet autem oppositam et quodammodo contrariam esse hanc medietatem armonicae medietati idcirco, quod in illa quemadmodum est maximus terminus ad parvissimum, sic terminorum maiorum differentia ad differentiam minorum, hic autem e contrario.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 1:9)
Est autem propriam huius medietatis, quoniam quod continetur sub maximo termino et medio duplum est eo, quod continetur sub medio atque parvissimo.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 1:10)
Est autem quinta medietas, quotiens in tribus terminis quemadmodum est medius terminus ad minorem terminum, ita eorum differentia ad differentiam medii atque maioris.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 2:2)
Contrarium autem geometricae medietati in hac proportione est, quod in illa quemadmodum major terminus ad minorem est, sic maiorum differentia ad differentiam minorum;
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 2:4)
Est autem proprium in hac quoque dispositione, quod illud, quod continetur sub maiore termino et medietate duplum est eo, quod sub utrisque extremitatibus continetur.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 2:6)
Sexta vero medietas est, quando tribus terminis constitutis quemadmodum est maior terminus ad medium, sic minorum terminorum differentia ad differentiam maximorum.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 3:1)
Eodem autem modo haec quoque medietas geometricae contraria est, quemadmodum et quinta, propter proportionem differentiarum a minoribus ad maiores terminos conversam.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 3:4)
Et hae quidem sunt sex medietates, quarum tres usque a Pythagora ad Platonem Aristotelemque manserunt.
(보이티우스, De Arithmetica, Liber secundus, De quattuor medietatibus, quas posteri ad implendum denarium limitem adiecerunt 1:1)
Sequens autem aetas, quemadmodum diximus, ad inplendam denariam quantitatem alias quattuor medietates apposuit, quas non adeo quis in veterum libris inveniat.
(보이티우스, De Arithmetica, Liber secundus, De quattuor medietatibus, quas posteri ad implendum denarium limitem adiecerunt 1:3)
Prima enim quae est earum, in ordine vero septima medietas, hoc modo coniungitur, cum in tribus terminis quemadmodum est maximus terminus ad ultimum, sic maximi et parvissimi termini differentia ad minorum differentiam terminorum, ut in hac dispositione:
(보이티우스, De Arithmetica, Liber secundus, De quattuor medietatibus, quas posteri ad implendum denarium limitem adiecerunt 1:5)
Disponamus igitur cunctas medietates in ordinem, ut, cuiusmodi omnes sint, facillime possit intellegi.
(보이티우스, De Arithmetica, Liber secundus, Dispositio decem medietatum 1:1)
Etenim perfectius huiusmodi medietate nihil poterit inveniri, quae tribus intervallis producta perfectissimi corporis naturam substantiamque sortita est. Hoc enim modo cybum quoque trina demensione crassatum plenam armoniam esse demonstravimus.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:2)
Sit autem quoddam huius dispositionis exemplar hoc modo vj viij viiij xij. Has igitur omnes solidas quantitates esse non dubium est. Sex enim nascuntur ex uno bis ter, xij autem ex bis duo ter, horum autem medietates octonarius fit semel duo quater, novenarius vero semel tres ter. Omnes igitur termini cognati sibi et tribus intervallorum demensionibus notati sunt.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:7)
In utrisque enim ternarius differentia est et iunctae extremitates medietate duplae sunt.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:13)
In his ergo geometricam arithmeticamque medietatem perspeximus.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:15)

SEARCH

MENU NAVIGATION