라틴어 문장 검색

Tollatur corpus B & inveniatur locus v, a quo si corpus A demittatur & post unam oscillationem redeat ad locum r, sit st pars quarta ipsius rv sita in medio, & per chordam arcus tA exponatur velocitas quam corpus A proxime post reflexionem habuit in loco A. Nam t erit locus ille verus & correctus ad quem corpus A, sublata aeris resistentia, ascendere debuisset.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:17)
Corporis igitur alterutrius in hoc spatio mobili de loco dato, secundum datam rectam, data cum velocitate exeuntis, & vi centripeta ad centrum illud tendente correpti, determinandus est motus per Problema nonum & vicesimum sextum:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 29:3)
Et si velocitas, quacum corpus exit de loco suo P, ea sit, qua lineola PR in minima aliqua temporis particula describi possit, & vis centripeta potis sit eodem tempore corpus idem movere per spatium QR:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 25:2)
Somnio enim propius videbatur adultum adhuc iuvenem, exiguo corpore, factis praestantem ingentibus, post cruentos exitus regum et gentium, ab urbe in urbem inopina velocitate transgressum, quaqua incederet accessione opum et virium, famae instar cuncta facilius occupasse, principatum denique deferente nutu caelesti, absque ulla publicae rei suscepisse iactura.
(암미아누스 마르켈리누스, 사건 연대기, Liber XXII: Julianus, 2장 5:1)
Corpora Sphaerica quibus resistitur in duplicata ratione velocitatum, temporibus quae sunt ut motus primi directe & resistentiae primae inverse, amittent partes motuum proportionales totis, & spatia describent temporibus istis in velocitates primas ductis proportionalia.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 15:1)
Spatium vero a corpore descriptum differentia est duorum spatiorum, quorum alterum est ut tempus sumptum ab initio descensus, & alterum ut velocitas, quae etiam ipso descensus initio aequantur inter se.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 23:2)
Tempus autem, quo corpus describit lineolam Tt, est ut lineolae hujus longitudo (id est ut secans anguli tTC) directe, & velocitas inverse.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 51:8)
& augendo velocitates corporum D & F in ratione quacunque, ac diminuendo vires particularum Medii B in eadem ratione duplicata, accedet Medium B ad formam & conditionem Medii C pro lubitu, & idcirco resistentiae corporum aequalium & aequivelocium E & G in his Mediis, perpetuo accedent ad aequalitatem, ita ut earum differentia evadat tandem minor quam data quaevis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 10:11)
Corpora quae in Vortice delata in orbem redeunt ejusdem sunt densitatis cum Vortice, & eadem lege cum ipsius partibus (quoad velocitatem & cursus determinationem) moventur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 34:1)
fiet {2dd ÷ ee}S aequalis A. Unde est dd ad ee ut A ad 2S, & d ad e in dimidiata ratione ½A ad S. Est igitur velocitas quacum aqua exit e foramine, ad velocitatem quam aqua cadens, & tempore T cadendo describens spatium S acquireret, ut altitudo aquae foramini perpendiculariter incumbentis, ad medium proportionale inter altitudinem illam duplicatam & spatium illud S, quod corpus tempore T cadendo describeret.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 48:6)
Si corpus, in Medio cujus densitas est reciproce ut distantia locorum a centro, revolutionem in Curva quacunque AEB circa centrum illud fecerit, & Radium primum AS in eodem angulo secuerit in B quo prius in A, idque cum velocitate quae fuerit ad velocitatem suam primam in A reciproce in dimidiata ratione distantiarum a centro (id est ut BS ad mediam proportionalem inter AS & CS:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 16:2)
Coincidat autem EG ipso motus initio cum perpendiculari AB, & erit corporis velocitas in loco quovis E ut areae curvilineae ABGE latus quadratum. Q. E. I. In EG capiatur EM lateri quadrato areae ABGE reciproce proportionalis, & sit ALM linea curva quam punctum M perpetuo tangit, & erit tempus quo corpus cadendo describit lineam AE ut area curvilinea ALME.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 41:4)
Debebit tamen resistentia tam in aere quam in aqua, si velocitas per gradus in infinitum augeatur, augeri tandem in ratione paulo plusquam duplicata, propterea quod in experimentis hic descriptis resistentia minor est quam pro ratione de corporibus velocissimis in Libri hujus Prop.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 101:3)
Quare corpora duo D, d simul pervenient ad loca C & O, alterum quidem in Medio non resistente ad locum C, & alterum in Medio resistente ad locum O. Cum autem velocitates in C & O sint ut arcus CB & OB;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 14:13)
Si corporum Systemata duo ex aequali particularum numero constent & particulae correspondentes similes sint, singulae in uno Systemate singulis in altero, ac datam habeant rationem densitatis ad invicem, & inter se temporibus proportionalibus similiter moveri incipiant, (eae inter se quae in uno sunt Systemate & eae inter se quae sunt in altero) & si non tangant se mutuo quae in eodem sunt Systemate, nisi in momentis reflexionum, neque attrahant vel fugent se mutuo, nisi viribus acceleratricibus quae sint ut particularum correspondentium diametri inverse & quadrata velocitatum directe:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 2:1)

SEARCH

MENU NAVIGATION