라틴어 문장 검색

Tetragonus autem dicitur, ut brevissime dicam, quod post latius explicabitur, quem duo aequales numeri multiplicant, ut in hac quoque descriptione est. Unus enim semel unus est, et est potestate tetragonus.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:2)
Hoc igitur cum in terminis aequalibus feceris, ex his qui nascentur, duplices erunt, de quibus duplicibus si idem feceris, triplices procreantur et de his quadruplices atque in infinitum omnes formas numeri multiplicis explicabit.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:13)
Superioris libri disputatione digestum est, quemadmodum tota inaequalitatis substantia a principe sui generis aequalitate processerit.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:1)
Ex hoc igitur principio, id est ex unitate, prima omnium longitudo succrescit, quae a binarii numeri principio in cunctos sese numeros explicat, quoniam primum intervallum linea est. Duo vero intervalla sunt longitudo et latitudo, id est linea et superficies.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:24)
Linearis numerus est a duobus inchoans adiecta semper unitate in unum eundemque ductum quantitatis explicata congeries, ut est id, quod subiecimus.
(보이티우스, De Arithmetica, Liber secundus, De numero lineari 1:3)
Huic vero si consequentem quaternarium superposuero, denarius explicatur, qui est tertius actu triangulus, quos per latera disponens ad superioris descriptionis exemplar cunctos triangulos numeros sine ullius dubitationis erroribus pernotabis.
(보이티우스, De Arithmetica, Liber secundus, De generatione triangulorum numerorum 3:5)
In sesqualtera vero duorum est differentia, in sesquitertia trium, in sesquiquarta quattuor et deinceps secundum superparticulares formas numerorum, quod ad differentias adtinet, uno tantum crescit adiectio numerum explicans naturalem.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 4:2)
Nam si omnes ab unitate inpares disponantur, iuncti figuras cybicas explicabunt.
(보이티우스, De Arithmetica, Liber secundus, Cybos eiusdem participare substantiae, quod ab inparibus nascantur 1:2)
In quattuor enim terminis si fuerit quemadmodum primus ad tertium sic secundus ad quartum, proportionum ratione scilicet custodita, geometrica medietas explicatur, et quod continetur sub extremitatibus, aequum erit ei, quod sub utraque medietate ad se invicem multiplicata conficitur.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:4)
Diffusa linguas explicet
(보이티우스, De philosophiae consolatione, Liber Secundus, XIV 10:1)
mirum est quod dicere gestio, eoque sententiam uerbis explicare uix queo.
(보이티우스, De philosophiae consolatione, Liber Secundus, XV 1:4)
Quae si beatos explicare possunt, nihil causae est quin pecudes quoque beatae esse dicantur, quarum omnis ad explendam corporalem lacunam festinat intentio.
(보이티우스, De philosophiae consolatione, Liber Tertius, XIII 1:5)
Non tam uero certus naturae ordo procederet nec tam dispositos motus locis, temporibus, efficientia, spatiis, qualitatibus explicarent nisi unus esset qui has mutationum uarietates manens ipse disponeret.
(보이티우스, De philosophiae consolatione, Liber Tertius, XXIII 1:13)
Atque haec nullis extrinsecus sumptis, sed ex altero [altero] fidem trahente insitis domesticisque probationibus explicabas.
(보이티우스, De philosophiae consolatione, Liber Tertius, XXIII 3:18)
Duo sunt, quibus omnis humanorum actuum constat effectus, uoluntas scilicet ac potestas, quorum si alterutrum desit, nihil est quod explicari queat.
(보이티우스, De philosophiae consolatione, Liber Quartus, III 1:6)

SEARCH

MENU NAVIGATION