라틴어 문장 검색

Namque in x pyramide super sex additi sunt tres atque unus, qui senarius superat ternarium quantitate, ipsi vero tres unum pluralitate transcendunt, qui unus extremum terminum progressionis offendit.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:3)
In his quoque omnibus pyramidis tot erunt unitates per latera, quantae in se numerorum adgregatae fuerint quantitates.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:10)
Nam si bis binos bis facias, octonaria quantitas crescit.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:6)
Est ergo princeps inparis ordinis unitas, quae ipsa quidem effectrix et quodammodo forma quaedam est inparitatis, quae in tantum eiusdem nec mutabilis substantiae est, ut, cum vel se ipsa multiplicaverit vel in planitudine vel in profunditate, vel si alium quemlibet numerum per se ipsa multiplicet, a prioris quantitatis forma non discrepet.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:1)
Namque si unum semel facias, vel si semel unum semel, vel si duo semel, vel si tres semel, vel si quattuor semel, vel quemlibet alium numerum multiplicet, a quantitate sua is, quem multiplicat, numerus non recedit, quod circa alium numerum non potest inveniri.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:2)
Namque si se ipsa multiplicet vel per latitudinem vel etiam per profunditatem vel si quem numerum in suam conglobet quantitatem, continuo alter exoritur.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:4)
Ipsorum vero cyborum quanticunque fuerint ita ducti, ut a quo numero cybicae quantitatis latus coeperit, in eundem altitudinis extremitas terminetur, numerus ille cyclicus vel sphericus appellatur;
(보이티우스, De Arithmetica, Liber secundus, De circularibus vel sphericis numeris 1:1)
Unde nunc nobis monstrandum est, hac gemina numerorum natura, quadratorum scilicet et parte altera longiorum cunctas numeri species cunctasque habitudines vel ad aliquid relatae quantitatis, ut multiplicium vel superparticularium et ceterorum, vel ad se ipsam consideratae, ut formarum, quas dudum in superiore disputatione descripsimus, informari, ut, quemadmodum mundus ex inmutabili mutabilique substantia, sic omnis numerus ex tetragonis, qui inmutabilitate perficiuntur, et ex parte altera longioribus, qui mutabilitate participiant, probetur esse coniunctus.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:8)
Non ergo inutiliter neque inprovide, qui de hoc mundo deque hac communi rerum natura ratiocinabantur, hanc primum totius mundi substantiae divisionem fecerunt.
(보이티우스, De Arithmetica, Liber secundus, Quod omnia ex eiusdem natura et alterius natura consistant idque in numeris primum videri 1:9)
proportionalitas est duarum vel plurium proportionum similis habitudo, etiamsi non eisdem quantitatibus et differentiis constitutae sint.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:5)
Differentia vero est inter numeros quantitas.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:6)
Et secundum quantitatem quoque numeri eodem modo est. Quantum enim tres superant binarium, tantum binarius unitatem, et quanto unus a duobus minor est, tanto binarius a ternario superatur.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:16)
Secundum quantitatem vero numeri, ut sunt:
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:22)
At vero posteri propter denarii numeri perfectionem, quod erat Pythagorae conplacitus, medietates alias quattuor addiderunt, ut in his proportionalitatibus denariae quantitatis corpus efficerent.
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:4)
Nunc vero de proportionalitatibus deque medietatibus dicendum est, et primum quidem de ea medietate tractabimus, quae secundum quantitatis aequalitatem neglecta proportionis parilitate constitutorum terminorum habitudines servat.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:1)

SEARCH

MENU NAVIGATION