라틴어 문장 검색

Unde si vas quiescat ac detur motus globi, dabitur motus fluidi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 27:2)
& tempora periodica partium fluidi respectu plani hujus erunt ut quadrata distantiarum suarum à centro globi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 27:5)
moveatur, dabitur motus fluidi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 28:3)
prius desinent fluidum & vas accelerari, quàm sint eorum tempora periodica aequalia temporibus periodicis globi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 29:3)
vas & globus in se invicem agent mediante fluido, neq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 29:8)
motus suos in se mutuò per fluidum propagare prius cessabunt, quàm eorum tempora periodica aequantur inter se, & Systema totum ad instar corporis unius solidi simul revolvatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 29:9)
In his omnibus suppono fluidum ex materia quoad densitatem & fluiditatem uniformi constare.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 31:1)
Tale est in quo globus idem eodem cum motu, in eodem temporis intervallo, motus similes & aequales, ad aequales semper à se distantias, ubivis in fluido constitutus, propagare possit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 31:2)
Rursus si partes fluidi sunt alicubi crassiores seu majores, fluiditas ibi minor erit, ob pauciores superficies in quibus partes separentur ab invicem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 31:6)
Hoc nisi fiat, materia ubi minùs fluida est magis cohaerebit & segnior erit, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 31:8)
Nam in fluido infinito constitutio Vorticum innotescit per Propositionis hujus Corollarium sextum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 31:17)
Partes crassiores & minus fluidae (nisi graves sint in centrum) circumferentiam petent;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 32:10)
& contra, si Vorticis pars congelata & solida ejusdem sit densitatis cum reliquo vortice, & resolvatur in fluidum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 35:4)
movebitur haec eadem lege ac prius, nisi quatenus ipsius particulae jam fluidae factae moveantur inter se.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 35:5)
Motus autem idem erit cum motu aliarum Vorticis partium à centro aequaliter distantium, propterea quod solidum in Fluidum resolutum fit pars Vorticis caeteris partibus consimilis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 35:7)

SEARCH

MENU NAVIGATION