라틴어 문장 검색

Quod enim comparatum numerum plus quam semel habet, multiplicis est, hoc vero, quod minorem in habenda parte transcendit, superparticularis.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 1:6)
et quotiens totum numerum in semet ipso continuerit per multiplicis numeri species appellabitur, quam vero partem comparati numeri clauserit, secundum superparticularem comparationem habitudinemque vocabitur.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 1:12)
Horum autem eorumque qui sequuntur exempla integre planeque possumus pernotare, si in priorem descriptionem, quam fecimus, cum de superparticulari et multiplici loqueremur, ubi ab uno usque in denariam multiplicationem summa concrevit, diligens velimus acumen intendere.
(보이티우스, De Arithmetica, Liber primus, De eorum exemplis in superiori formula inveniendis. 1:1)
Ad primum enim versum omnes, qui sequuntur, conlati ordinatas convenientesque multiplicis species reddent.
(보이티우스, De Arithmetica, Liber primus, De eorum exemplis in superiori formula inveniendis. 1:2)
Multiplex vero superparticularis ostenditur, cum ad secundum versum omnes, qui sunt quinti versus serie comparantur, vel qui sunt in septimo, vel qui sunt in nono, atque ita si in infinitum sit ista descriptio, in infinitum huius proportionis species procreabuntur.
(보이티우스, De Arithmetica, Liber primus, De eorum exemplis in superiori formula inveniendis. 1:5)
Multiplex vero superpartiens est, quotiens numerus ad numerum comparatus habet in se alium numerum totum plus quam semel et eius vel duas vel tres vel quotlibet plures particulas secundum numeri superpartientis figuram.
(보이티우스, De Arithmetica, Liber primus, De multiplici superpartiente. 1:1)
Ex his igitur secundum praecepti nostri ordinem videas primum nasci multiplices et in his duplices prius, dehinc triplos, inde quadruplos et ad eundem ordinem consequentes.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:7)
Rursus multiplices si convertantur, ex his superparticulares orientur, et ex duplicibus quidem sesqualteri ex triplis sesquitertii, ex quadruplis sesquiquarti et ceteri in hunc modum.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:8)
Rectis autem positis neque conversis prioribus superparticularibus multiplices superparticulares oriuntur;
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:10)
rectis vero superpartientibus multiplices superpartientes efficiuntur.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:11)
Hoc igitur cum in terminis aequalibus feceris, ex his qui nascentur, duplices erunt, de quibus duplicibus si idem feceris, triplices procreantur et de his quadruplices atque in infinitum omnes formas numeri multiplicis explicabit.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:13)
Si vero qui ex aequalibus nati sunt multiplices, eos disponamus et secundum haec praecepta vertamus, ita ut converso sint ordine, sesqualter ex duplici procreabitur, sesquitertius ex triplici, sesquiquartus ex quadruplo.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 15:2)
At vero si ad superpartientes animum convertamus eosque ordinatim secundum superiora praecepta disponamus, multiplices superpartientes ordinatim progenitos repperiemus.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 49:1)
Hoc autem nos exempli gratia in multiplici tantum proportione docebimus, sollertem vero in aliis quoque inaequalitatis speciebus id experientem eadem ratio praeceptorum iuvabit.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:15)
Omnes enim multiplices tantarum similium sibimet proportionum principes erunt, quoto ipsi loco ab unitate discesserint.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 2:1)

SEARCH

MENU NAVIGATION