라틴어 문장 검색

Nam ponderi proportionalem esse reperi per experimenta pendulorum accuratissime instituta, uti posthac docebitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 정의 3:9)
vel vis gravitans major in Vallibus, minor in cacuminibus praealtorum montium (ut experimento pendulorum constat) atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 정의 21:2)
Ab ijsdem Legibus & Corollariis pendent demonstrata de temporibus oscillantium Pendulorum, suffragante Horologiorum experientia quotidiana.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:3)
Sed & veritas comprobata est a D. Wrenno coram Regia Societate per experimentum Pendulorum, quod etiam Clarissimus Mariottus Libro integro exponere mox dignatus est.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:6)
Nam velocitatem Penduli in puncto infimo esse ut chorda arcus quem cadendo descripsit, Propositio est Geometris notissima.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:15)
Hoc modo in Pendulis pedum decem rem tentando, idq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:25)
Difficile erat tum pendula simul demittere sic, ut corpora in se mutuo impingerent in loco infimo AB, tum loca s, k, notare ad quae corpora ascendebant post concursum.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:39)
Primum demittendo Pendula & mensurando reflexionem, inveni quantitatem vis Elasticae;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 38:10)
Facere ut Corpus pendulum oscilletur in Cycloide data.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 23:1)
Centro C intervallo CA describatur Globus exterior ABD, & intra hunc globum Rota, cujus diameter sit AO, describantur duae semicycloides AQ, AS, quae globum interiorem tangant in Q & S & globo exteriori occurrant in A. A puncto illo A, filo APT longitudinem AR aequante, pendeat corpus T, & ita intra semicycloides AQ, AS oscilletur, ut quoties pendulum digreditur a perpendiculo AR, filum parte sui superiore AP applicetur ad semicycloidem illam APS, versus quam peragitur motus, & circum eam ceu obstaculum flectatur, parteq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 24:3)
Pendulis igitur duabus APT, Apt de perpendiculo AR inaequaliter deductis & simul dimissis, accelerationes eorum semper erunt ut arcus describendi TR, tR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 29:8)
perpendiculi latus jacentes sint similes & aequales, pendula duo oscillationes suas tam totas quam dimidias iisdem temporibus semper peragent. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 29:18)
Definire & velocitates Pendulorum in locis singulis, & Tempora quibus tum oscillationes totae, tum singulae oscillationum partes peraguntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 31:1)
& eodem tempore quo pendulum T dimittitur e loco supremo S, cadat corpus aliquod L ab H ad G:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:5)
, tempus quo corpus describit arcum ST est ad tempus oscillationis unius, ut arcus HI (tempus quo corpus H perveniet ad L) ad semicirculum HKM (tempus quo corpus H perveniet ad M.) Et velocitas corporis penduli in loco T est ad velocitatem ipsius in loco infimo R, (hoc est velocitas corporis H in loco L ad velocitatem ejus in loco G, seu incrementum momentaneum lineae HL ad incrementum momentaneum lineae HG, arcubus HI, HK aequabili fluxu crescentibus) ut ordinatim applicata LI ad radium GK, sive ut [sqrt]{SRq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:12)

SEARCH

MENU NAVIGATION