라틴어 문장 검색

Et erit: in die illa exibunt aquae vivae de Ierusalem, medium earum ad mare orientale, et medium earum ad mare occidentale: in aestate et in hieme erunt.
(불가타 성경, 즈카르야서, 14장8)
Alia vero disiuncta a se et determinata partibus et quasi acervatim in unum redacta concilium, ut grex populus chorus acervus et quicquid, quorum partes propriis extremitatibus terminantur et ab alterius fine discretae sunt His proprium nomen est multitudo.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:6)
in eo vero, quod usque ad unum sectio illa non ducitur, pariter inparem non refutat, sed a pariter pari disiungitur.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:6)
Inpar quoque numerus, qui a paris numeri natura substantiaque disiunctus est—si quidem ille in gemina aequa dividi potest, hic ne secari queat, unitatis inpedit inverventus—tres habet similiter subdivisiones, quarum una eius pars est is numerus, qui vocatur primus et incompositius, secunda vero, qui est secundus et compositus, et tertia is, qui quadam horum medietate coniunctus est et ab utriusque cognatione aliquid naturaliter trahit, qui est per se quidem secundus et compositus, sed ad alios comparatus primus et incompositus invenitur.
(보이티우스, De Arithmetica, Liber primus, De numero inpari eiusque divisione 1:1)
His vero contra se positis, id est primo et incomposito et secundo et composito, et naturali diversitate disiunctis alius in medio consideratur, qui ipse quidem compositus sit et secundus et alterius recipiens mensionem atque ideo et partis alieni vocabuli capax, sed cum fuerit ad alium eiusdem generis numerum comparatus, nulla cum eo communi mensura coniungitur;
(보이티우스, De Arithmetica, Liber primus, De eo, qui per se secundus et compositus est, ad alium primus et incompositus 1:1)
VI enim et vj nulla spatii intervalla disiungunt.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:19)
Binarius autem, numerus primus, est unitati dissimilis, idcirco quod primus ab unitate disiungitur.
(보이티우스, De Arithmetica, Liber secundus, De antelongioribus numeris et de vocabulo numeri parte altera longioris 1:4)
Nam cuiuscunque medietas unus est, ille inpar est, cuius vero duo, hic paritate recepta in gemina aequa disiungitur.
(보이티우스, De Arithmetica, Liber secundus, De antelongioribus numeris et de vocabulo numeri parte altera longioris 1:9)
Constat ergo numerus omnis ex his, quae longe disiuncta sunt atque contraria, ex inparibus scilicet et paribus.
(보이티우스, De Arithmetica, Liber secundus, Quod omnia ex eiusdem natura et alterius natura consistant idque in numeris primum videri 1:5)
Sin vero alius ad unum refertur terminus, alius vero ad alium, necesse est habitudinem disiunctam vocari, ut ad qualitatem quidem proportionis sunt:
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:17)
sin vero hic alius dux et alius comes, illic vero utrique sint alii, vocabitur disiuncta medietas.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:5)
Si igitur in tribus tantum terminis secundum continuam medietatem respexeris vel in quattuor vel in quotlibet aliis secundum disiunctam easdem semper differentias terminorum videbis, tantum solis proportionibus permutatis.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:6)
Nec non etiam in disiuncta eadem versabitur observatio.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 2:2)
Namque si duos intermittas, ternarius differentiam continebit, si tres, quaternarius, si quattuor, quinarius aeque in continuis proportionibus atque disiunctis.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 3:2)
Sin vero disiuncta sit, quod fit ex utrisque extremitatibus compositis, hoc ex duabus medietatibus redditur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:5)

SEARCH

MENU NAVIGATION