라틴어 문장 검색

exeat corpus de loco I secundum lineolam IT, ea cum velocitate quam corpus aliud, vi aliqua uniformi centripeta, de loco P cadendo acquirere posset in D: sitq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 17:2)
& hinc fit mk × ms ÷ mt, id est lineola nascens mn, eiq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 6:27)
adeo quod recta VP tanget hanc curvam in puncto P. Circuli nom radius sensim auctus aequetur tandem distantiae CP, & ob similitudinem figurae evanescentis Pnomq & figurae PFGVI, ratio ultima lineolarum evanescentium Pm, Pn, Po, Pq, id est ratio incrementorum momentaneorum curvae AP, rectae CP & arcus circularis BP, ac decrementi rectae VP, eadem erit quae linearum PV, PF, PG, PI respective.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 16:2)
In eorum diametris HM, hm capiantur lineolae aequales HY, hy, & erigantur normaliter YZ, yz circumferentiis occurrentes in Z & z.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 35:3)
Ea cum velocitate, dato tempore quam minimo, describat corpus Trajectoriae suae particulam Tt, sitq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 59:2)
Et quoties hujusmodi casus incidunt, aestimandae erunt corporum attractiones, assignando singulis eorum particulis vires proprias, & colligendo summas virium.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 90:3)
Videamus igitur quibus viribus corpora Sphaerica, ex particulis modo jam exposito attractivis constantia, debeant in se mutuo agere, & quales motus inde consequantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 90:15)
) similia, arcus illi erunt distantiis HP, LP proportionales, & superficiei Sphaericae particulae quaevis, ad HI & KL rectis per punctum P transeuntibus undiq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 4:4)
Ergo vires harum particularum in corpus P exercitae sunt inter se aquales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 4:6)
Sunt enim ut particulae directe & quadrata distantiarum inverse.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 4:7)
& ob aequales DS & ds, ES & es, & angulos evanescentes DPE & dpe, lineae PE, PF & pe, pf & lineolae DF, df pro aequalibus habeantur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 8:8)
Nam concipe corpuscula duo seorsim a Sphaeris duabus attrahi, & distantias a centris proportionales esse diametris, Sphaeras autem resolvi in particulas similes & similiter positas ad corpuscula.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 11:1)
Sed particulae sunt ut Sphaerae, hoc est in ratione triplicata diametrorum, & distantiae sunt ut diametri, & ratio prior directe una cum ratione posteriore bis inverse est ratio diametri ad diametrum. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 11:3)
Similiter per puncta, ex quibus lineae, superficies & solida componi dicuntur, intelligendae sunt particulae aequales magnitudinis contemnendae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 19:3)
Si corpusculum extra Sphaeram homogeneam positum trahitur vi reciproce proportionali quadrato distantiae suae ab ipsius centro, constet autem Sphaera ex particulis attractivis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 25:2)

SEARCH

MENU NAVIGATION