라틴어 문장 검색

Verum excessus in illis et locutio plane hyperbolica (quali nonnulli utuntur) non solum res molesta, sed etiam fidem et pondus eorum quae dicuntur omnino minuit.
(FRANCIS BACON, SERMONES FIDELES SIVE INTERIORA RERUM, L. [ = English LI] DE CAEREMONIIS CIVILIBUS ET DECORO 1:17)
Eodem modo, quando ex alterutra parte videt iudex manum elatum, veluti in prosecutione importuna, captionibus malitiosis, combinationibus, patrocinio potentum, advocatorum disparitate, et similibus, tum elucescit virtus iudicis in aequandis iis quae sunt inaqualia, iut iudicium suum veluti in area plana fundare possit.
(FRANCIS BACON, SERMONES FIDELES SIVE INTERIORA RERUM, LIV. [ = English LVI] DE OFFICIO IUDICIS 2:8)
Verum e contraria parte tam immanis plane et vasta habent flumina ut fluvii Asiae, Africae, et Europae prae illis instar rivulorum sint.
(FRANCIS BACON, SERMONES FIDELES SIVE INTERIORA RERUM, LVI. [ = English LVIII] DE VICISSITUDINE RERUM 1:20)
Hace autem sunt qalitates, quantitates, formae, magnitudines, parvitates, aequalitates, habitudines, actus, dispositiones, loca, tempora et quicquid adunatum quodammodo corporisbus invenitur, quae ipsa quidem natura incorporea sunt et inmutabili substantiae ratione vigentia, participatione vero corporis permutantur et tactu variabilis rei in vertibilem inconstantiam transeunt Haec igitur quoniam, ut dictum est, natura inmutabilem substantiam vimque sortita sunt, vere proprieque esse dicuntur.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:4)
Omnis enim aequalitas unam servat in propria moderatione mensuram.
(보이티우스, De Arithmetica, Liber primus, De relata ad aliquid quantitate. 1:5)
Namque maius minore maius est et minus maiore minus est, et utraque non eisdem vocabulis, quemadmodum secundum aequalitatem dictum est, sed diversis distantibusque signata sunt, ad modum discentis scilicet vel docentis vel caedentis vel vapulantis vel quaecunque ad aliquid relata aliter denominatis contrariis comparantur.
(보이티우스, De Arithmetica, Liber primus, De relata ad aliquid quantitate. 2:2)
Quoniam autem naturaliter et secundum propriam ordinis consequentiam multiplicem inaequalitatis speciem cunctis praeposuimus primamque speciem esse monstravimus, licet hoc nobis posterioris operis ordine clarescat, hic quoque perstringentes id, quod proposuimus, planissime breviterque doceamus.
(보이티우스, De Arithmetica, Liber primus, Descriptio, per quam docetur ceteris inaequalitatis speciebus antiquiorem esse multiplicitatem. 1:1)
Quare constat, omnium inaequalitatum aequalitatem esse principium.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 57:2)
Superioris libri disputatione digestum est, quemadmodum tota inaequalitatis substantia a principe sui generis aequalitate processerit.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:1)
Videbis igitur hoc facto in minorem modum summas reverti et ad principaliorem habitudinem comparationes proportionesque reduci, ut si sit quadrupla proportio, primo ad triplam, inde ad duplam, inde ad aequalitatem usque remeare;
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:13)
Quare pronuntiandum est, nec ulla trepidatione dubitandum, quod quemadmodum per se constantis quantitatis unitas principium et elementum est, ita et ad aliquid relatae quantitatis aequalitas mater est. Demonstravimus enim, quod hinc et eius procreatio prima foret et in eam rursus postrema solutio.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 5:2)
Eadem quippe etiam circa aequalitates proportio manet.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:15)
Superficies quoque numerorum, cum ipsa solidum corpus non sit, additi tamen latitudini solidi corporis caput est. Hoc autem planius his exemplis liquebit.
(보이티우스, De Arithmetica, Liber secundus, De numero lineari 1:2)
Hi vero idcirco a ternario numero inchoant, quod latitudinis et superficiei solus ternarius principium est. In geometria quoque idem planius invenitur.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:2)
Est igitur primus triangulus numerus, qui in solis tribus unitatibus dissipatur secundum superficiei positionem, triangula scilicet descriptione, et post hunc quicunque aequalitatem laterum in trina laterum spatia segregant.
(보이티우스, De Arithmetica, Liber secundus, Dispositio triangulorum numerorum 2:1)

SEARCH

MENU NAVIGATION