라틴어 문장 검색

Perfecta enim pyramis est, quae a qualibet basi profecta usque ad primam vi et potestate pyramidam pervenit, unitatem.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:2)
Sin vero a qualibet basi profecta usque ad unitatem altitudo illa non venerit, curta vocabitur, recteque huiusmodi pyramis tali nuncupatione signatur, si usque ad extremitatem punctumque non venerit.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:3)
Pyramidis equidem figura est, sed quoniam usque ad cacumen verticis non excrevit, curta vocabitur et habebit summitatem non iam punctum, quod unitas est, sed superficiem, quod est quilibet numerus secundum basis ipsius angulos porrectus atque ultimus adgregatus.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:5)
Ergo in curta pyramide tot erit angulorum superficies, quot fuerit basis.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:7)
Si vero illa pyramis non solum ad unitatem extremitatemque non pervenit, sed nec ad primum quoque opere et actu multiangulum eius generis, cuius fuerit basis, bis curta vocabitur;
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:8)
Et quotcunque tetragoni fuerint minus, totiens illam pyramidem curtam esse proponimus.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:14)
Hoc autem non solis a tetragono pyramidis sed in omnibus ab omni multiangulo progredientibus speculari licet.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:15)
Ac de solidis quidem, quae pyramidis formam obtinent, aequaliter crescentibus et a propria velut radice multiangula figura progredientibus dictum est. Est alia rursus quaedam corporum solidorum ordinabilis compositio, eorum qui dicuntur cybi vel asseres vel laterculi vel cunei vel spherae vel parallelepipeda, quae sunt, quotiens superficies contra se sunt, et ductae in infinitum nunquam concurrent.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:1)
Dispositis enim in ordinem tetragonis i iiij viiij xvj xxv, quoniam hi solam longitudinem latitudinemque sortiti sunt et altitudine carent, si per latera solam unam multiplicationem recipiant, aequalem provehunt profunditatem.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:2)
Et quoniam omnis cybus ab aequilateris quadratis profectus aequus ipse omnibus partibus est -- nam et latitudini longitudo et his duobus compar est altitudo -- et secundum sex partes, id est sursum deorsum dextra sinistra ante post, sibi aequalem esse necesse est:
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:1)
huic oppositum contrariumque esse oportebit qui neque longitudinem latitudini neque haec duo profunditati gerat aequalia, sed cunctis inaequalibus, quamvis solida sit figura, ab aequalitate cybi longissime distare videatur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:2)
Etenim quos ad quamlibet illam rem constringendam cuneos formant neque latitudinis neque longitudinis neque altitudinis habita ratione, quantum commodum fuerit, tantum vel altitudini minuitur, vel crassitudini profunditatis augetur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:8)
Quidam vero hos bomiscos vocant, id est quasdam arulas, quae in Ionica Graeciae regione, ut ait Nicomachus, hoc modo formatae fuerunt, ut neque altitudo latitudini neque haec longitudini convenirent.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:10)
Parte altera longior est numerus, quem si in latitudinem describas et ipse quidem quattuor venit laterum et quattuor angulorum, sed non cunctis aequalibus sed semper minus uno. Namque nec latera lateribus cuncta cunctis aequa sunt, nec longitudini latitudo, sed, ut dictum est, cum hinc altera pars maior fuerit, uno tantum minorem praecedit ac superat.
(보이티우스, De Arithmetica, Liber secundus, De parte altera longioribus numeris eorumque generationibus 1:3)
Quare quoniam tetragonorum haec natura est, ut ab inparibus procreentur, qui sunt unitatis participes, id est eiusdem inmutabilisque substantiae, cunctisque partibus suis aequales sint, quod et anguli angulis et latera lateribus et longitudini compar est latitudo, dicendum est, huiusmodi numeros eiusdem naturae atque inmutabilis substantiae participes, illos vero numeros, quos parte altera longiores paritas creat, alterius dicemus esse substantiae.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 1:2)

SEARCH

MENU NAVIGATION