라틴어 문장 검색

Quare quicquid uno intervallo caret, illud corpus solidum non est. Nam quod duo sola intervalla retinet, illud superficies appellatur.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:34)
Haec autem superficies uno tantum intervallo solidi corporis demensione superatur, quae uno rursus intervallo lineam vincit, quae longitudinis naturam retinens latitudinis expers est;
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:38)
Idem quoque et in superficiei rationem cadit, quae et ipsa solidi corporis et triplicis intervalli naturale sortitur initium, ipsa vero nec trina intervalli demensione distenditur, nec ulla crassitudine solidatur.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:43)
Est igitur primus triangulus numerus, qui in solis tribus unitatibus dissipatur secundum superficiei positionem, triangula scilicet descriptione, et post hunc quicunque aequalitatem laterum in trina laterum spatia segregant.
(보이티우스, De Arithmetica, Liber secundus, Dispositio triangulorum numerorum 2:1)
Sicut enim longitudini numerorum aliud intervallum, id est superficiem, ut latitudo ostenderetur, adiecimus, ita nunc latitudini si quis addat eam, quae alias altitudo alias crassitudo alias profunditas appellatur, solidum numeri corpus explebit.
(보이티우스, De Arithmetica, Liber secundus, De numeris solidis. 1:2)
Videtur autem, quemadmodum in planis figuris triangulus numerus primus est, sic in solidis, qui vocatur pyramis, profunditatis esse principium.
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:1)
nunc vero ad solidorum corporum procreationem ipsae nobis superficies naturaliter figuratae provenient.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:4)
Quos autem superius laterculos diximus, quae sunt et ipsae quidem solidae figurae, hoc modo fiunt, quotiens aequalibus spatiis in longitudinem latitudinemque porrectis minor his additur altitudo, ut sunt huius modi:
(보이티우스, De Arithmetica, Liber secundus, De generatione laterculorum eorumque definitione 1:1)
Asseres vero et ipsae quidem figurae sunt solidae sed hoc modo, ut ex aequalibus aequaliter ducantur in maius.
(보이티우스, De Arithmetica, Liber secundus, De generatione laterculorum eorumque definitione 1:5)
Ac de solidis quidem figuris haec ad praesens dicta sufficiant.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:1)
Et illam primam inmutabilem naturam unius eiusdemque substantiae vocant, hanc vero alterius, scilicet quod a prima illa inmutabili discedens prima sit altera, quod nimirum ad unitatem pertinet et ad dualitatem, qui numerus primus ab uno discedens alter factus est. Et quoniam cuncti secundum unitatis speciem naturamque inpares numeri formati sunt, quique ex his coacervatis tetragoni fiunt, duplici modo eiusdem substantiae participes esse dicuntur, quod vel ab aequalitate formantur tetragoni, vel coacervatis in unum numeris inparibus procreantur.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:4)
Hic enim ex uno et duobus et inpari atque pari coniungitur, quae manifesta sunt aequalitatis atque inaequalitatis, eiusdem atque alterius, definitae atque indefinitae esse substantiae.
(보이티우스, De Arithmetica, Liber secundus, Quod omnia ex eiusdem natura et alterius natura consistant idque in numeris primum videri 1:13)
Quae scilicet magna est alteritatis vis. Omnis enim infinita et indeterminata potentia ab aequalitatis natura et a suis se finibus continente substantia discedens aut in maius exuberat aut in minora decrescit.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum quadrati ex parte altera longioribus vel parte altera longiores ex quadratis fiant 1:3)
Est enim aequalitas in his proportionibus et quemadmodum sunt iiij ad ij, sic sunt ij ad unum, et rursus quemadmodum unus ad duo, sic duo ad quattuor.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:15)
Nunc vero de proportionalitatibus deque medietatibus dicendum est, et primum quidem de ea medietate tractabimus, quae secundum quantitatis aequalitatem neglecta proportionis parilitate constitutorum terminorum habitudines servat.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:1)

SEARCH

MENU NAVIGATION