라틴어 문장 검색

Tetragonus xvj sesquitertia
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 29:1)
Tetragonus xxv sesquiquarta
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 31:1)
Tetragonus xxxvj sesquiquinta
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 33:1)
Tetragonus xlviiij sesquisexta
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 35:1)
Sint enim duo tetragoni iiij scilicet et viiij.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:9)
Hoc autem idcirco evenit, quod singula latera singulorum tetragonorum efficiunt senariam medietatem.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:12)
Nam quaternarii tetragoni latus binarius est, novenarii ternarius.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:13)
bis enim iij senarius est. Et quotienscunque datis duobus tetragonis eorum medietatem volumus invenire, latera eorum multiplicanda sunt, et qui ex his procreabitur, medietas est. Si autem cybi sunt, ut viij et xxvij, duae tantum inter hos eadem proportione medietates constitui queunt, xij scilicet et xviij.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:15)
In hac enim dispositione armonica, quae est ij iij vj ternarius binarium tertia sui parte vincit, idem ternarius a senario tota sui quantitate superatur, id est tribus, idemque ipse ternarius medietate minoris vincit minorem, id est uno, et medietate maioris a maiore termino vincitur, id est tribus.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:15)
Habet autem aliam proprietatem armonica medietas, ut cum duas extremitates in unum redactas medietas multiplicaverit, dupla quantitas colligatur, quam si se multiplicent duae extremitates.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:18)
Cuius haec ratio est, quoniam arithmetica dispositio aequas tantum per differentias dividit quantitates, geometrica vero terminos aequa proportione coniungit, at vero armonica ad aliquid quodammodo relata consideratione neque solum in terminis speculationem proportionis habet neque solum in differentiis, sed in utrisque communiter.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 1:2)
Inter hos ergo si xxv posuero, erit mihi arithmetica proportio differentiarum quantitate inmutabiliter custodita, in huiusmodi scilicet dispositione:
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:5)
x xxv xl. Vides enim, ut quindena sese summulae quantitate transcendant;
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:6)
et si in unum extremitates redigantur et medietatis quantitate concrescant, duplus inde conficitur numerus ab eo, qui ex solis multiplicatis extremitatibus procreatur.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 3:7)
Nam si sint v xxv xlv eadem sese numerorum quantitate termini transgredientur.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 4:2)

SEARCH

MENU NAVIGATION