라틴어 문장 검색

Pyramidis equidem figura est, sed quoniam usque ad cacumen verticis non excrevit, curta vocabitur et habebit summitatem non iam punctum, quod unitas est, sed superficiem, quod est quilibet numerus secundum basis ipsius angulos porrectus atque ultimus adgregatus.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:5)
Si vero illa pyramis non solum ad unitatem extremitatemque non pervenit, sed nec ad primum quoque opere et actu multiangulum eius generis, cuius fuerit basis, bis curta vocabitur;
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:8)
ut si unitas defuerit, primus quadratus, curtam, quam Graeci κολουρον vocant;
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:11)
si vero duobus tetragonis deficitur, id est unitate et eo, qui sequitur, vocatur bis curta, quod Graeci δικολουρον appellant.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:12)
Tot autem necesse est unitates cybus habeat in latere, quot habuit primus ille tetragonus, ex quo ipse productus est. Nam quoniam quattuor tetragonus duos tantum numeros habet in latere, duos quoque habet octonarius cybus.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:12)
Et quoniam viiij tetragonus tribus per latus unitatibus signabatur, solo ternario xxvij cybi latus urgetur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:13)
Quare etiam vi et potestate cybi, quod est unitas, unus erit in latere.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:15)
Omnis autem cybus, qui ex tetragonorum superficie in profunditatem corporis crevit, per tetragoni scilicet latus multiplicatus, habebit quidem superficies vj, quarum singula planitudo tetragono illi priori aequalis est, latera vero xij, quorum unumquodque singulis his, quae superioris fuere tetragoni, aequum est, et, ut superius demonstravimus, tot unitatum est;
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:17)
Si enim numerum naturalem disponas in ordinem, et secundum per primum multiplices, talis nascitur numerus, vel si secundum per tertium, vel si tertium per quartum, vel si quartum per quintum, omnesque hi unitate tantum addita, multiplicentur, nascentur parte altera longiores.
(보이티우스, De Arithmetica, Liber secundus, De parte altera longioribus numeris eorumque generationibus 1:4)
Alterum enim apud Pythagoram vel sapientiae eius heredes nulli alii nisi tantum binario adscribebatur.
(보이티우스, De Arithmetica, Liber secundus, De antelongioribus numeris et de vocabulo numeri parte altera longioris 1:2)
Hunc alteritatis principium esse dicebant, eandem autem naturam et semper sibi similem consentientemque nullam aliam nisi primaevam ingeneratamque unitatem.
(보이티우스, De Arithmetica, Liber secundus, De antelongioribus numeris et de vocabulo numeri parte altera longioris 1:3)
Atque ideo alteritatis cuiusdam principium fuit, quod ab illa prima et semper eadem substantia sola tantum est unitate dissimilis.
(보이티우스, De Arithmetica, Liber secundus, De antelongioribus numeris et de vocabulo numeri parte altera longioris 1:5)
Argumentum autem est, alteritatem in binario numero iuste constitui, quod non dicitur alterum nisi e duobus ab his, inter quos bene loquendi ratio non neglegitur.
(보이티우스, De Arithmetica, Liber secundus, De antelongioribus numeris et de vocabulo numeri parte altera longioris 1:7)
Quare dicendum est, inparem numerum eiusdem atque in sua se natura tenentis inmutabilisque substantiae esse participem, idcirco quod ab unitate formetur, parem vero alterius plenum esse naturae, idcirco quod a dualitate conpletur.
(보이티우스, De Arithmetica, Liber secundus, De antelongioribus numeris et de vocabulo numeri parte altera longioris 1:10)
At vero positis in ordinem ab unitate inparibus et sub his a dualitate paribus descriptis coacervatio inparium tetragonos facit, coacervatio parium superiores efficit parte altera longiores.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 1:1)

SEARCH

MENU NAVIGATION