라틴어 문장 검색

id est ita ut sit PA ad QB ut velocitas in Q ad velocitatem in P, & QB ad RC ut velocitas in R ad velocitatem in Q. Per perpendiculorum terminos A, B, C ad angulos rectos ducantur AD, DBE, EC concurrentia in D & E:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 40:2)
areae illae simul descriptae ut velocitates in P & Q ductae respective in perpendicula a centro in tangentes PT, QT demissa:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 41:2)
ut perpendicula AP, BQ directe, id est ut perpendicula a puncto D in tangentes demissa.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 41:4)
Si corpus P revolvendo circa centrum S, describat lineam quamvis curvam APQ, tangat vero recta ZPR curvam illam in puncto quovis P, & ad tangentem ab alio quovis curvae Q agatur QR distantiae SP parallela, ac demittatur QT perpendicularis ad distantiam SP:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 43:1)
÷ QR inverse. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 45:12)
Esto circuli circumferentia SQPA, centrum vis centripetae S, corpus in circumferentia latum P, locus proximus in quem movebitur Q. Ad diametrum SA & rectam SP demitte perpendiculi PK, QT, & per Q ipsi SP parallelam age LR occurrentem circulo in L & tangenti PR in R, & coeant TQ, PR in Z. Ob similitudinem triangulorum ZQR, ZTP, SPA erit RP quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 50:1)
Perpendiculum quod ab umbilico Parabolae ad tangentem ejus demittitur, medium est proportionale inter distantias umbilici a puncto contactus & a vertice principali figurae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 15:1)
Ergo PS est ad SN ut SN ad SA. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 16:3)
Et concursus tangentis cujusvis PM cum recta SN quae ab umbilico in ipsam perpendicularis est, incidit in rectam AN, quae Parabolam tangit in vertice principali.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 19:2)
hoc est, latus rectum L in duplicata ratione areae QT × SP. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 28:7)
dimidiata ratio lateris recti & manebit sesquiplicata ratio axis transversi aequalis rationi periodici temporis. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 32:6)
ab umbilico communi ad has tangentes perpendicularibus:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 35:2)
Ab umbilico S ad tangentem PR demitte perpendiculum SY & velocitas corporis P erit reciproce in dimidiata ratione quantitatis SYq. ÷ L. Nam velocitas illa est ut arcus quam minimus PQ in data temporis particula descriptus, hoc est (per Lem. VII.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 36:1)
) ut tangens PR, id est (ob proportionales PR ad QT & SP ad SY) ut SP × QT ÷ SY, sive ut SY reciproce & SP × QT directe; estq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 36:2)
in dimidiata ratione lateris recti Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 36:4)

SEARCH

MENU NAVIGATION