라틴어 문장 검색

Ideoque cum triangulum ASE sit ad triangulum ASC in eadem ratione, erit area tota ASEY ad aream totam ASCY ut AE ad AC quamproximè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 46:2)
alteri prioribus transversi secundum lineas ipsis PC, pC perpendiculares determinantur) motus versus centrum erunt aequales, & motus transversus corporis p erit ad motum transversum corporis P, ut motus angularis lineae pC ad motum angularem lineae PC, id est ut angulus VCp ad angulum VCP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 6:6)
quadratus in quattuor triangulos divisus, pentagonus in v triangulos divisus, exagonus in sex triangulos divisus.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:6)
Unde si ad aream ASEY addatur triangulum EYB, & de summa auferatur triangulum SEB, manebit area ASBY areae ASEY aequalis quamproximè, atque adeo ad aream ASCY ut AE ad AC.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 46:4)
Omnes enim tetragoni, qui sub triangulis sunt naturali ordinatione dispositi, ex superioribus triangulis procreantur illorumque collectione quadrati figura componitur.
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:2)
Ex quaternario quoque et senario denarius triangulus nascitur, et ad eundem ordinem cuncta triangulorum ratio constabit.
(보이티우스, De Arithmetica, Liber secundus, Quod ex quadratis et parte altera longioribus omnis formarum ratio consistat 1:3)
Jungatur AN, & ob aequales MS & SP, MN & NP, MA & AO, parallelae erunt rectae AN & OP, & inde triangulum SAN rectangulum erit ad A & simile triangulis aequalibus SMN, SPN.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 16:2)
Unde cum tangant insuper trianguli DEF anguli D, E, F trianguli abc latera ab, ac, bc respective, compleri potest figura ABCdef figurae abcDEF similis & aequalis, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 109:13)
triangula NBM, PBT similia sunt, ut & triangula NCM, PCR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 35:5)
Huic vero si consequentem quaternarium superposuero, denarius explicatur, qui est tertius actu triangulus, quos per latera disponens ad superioris descriptionis exemplar cunctos triangulos numeros sine ullius dubitationis erroribus pernotabis.
(보이티우스, De Arithmetica, Liber secundus, De generatione triangulorum numerorum 3:5)
Junge SC, & triangulum SBC, ob parallelas SB, Cc, aequale erit triangulo SBc, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 4:8)
hoc est, ut errores omnes lineares sint ut Orbium diametri, angulares vero iidem qui prius, & errorum linearium similium vel angularium aequalium tempora ut Orbium tempora periodica.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 67:4)
Nimirum si motus totus angularis, quo corpus redit ad Apsidem eandem, sit ad motum angularem revolutionis unius, seu graduum 360, ut numerus aliquis m ad numerum alium n, & altitudo nominetur A:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 22:4)
columnae sunt in latitudine testudinis cum angularibus dextra ac sinistra quaternae, in longitudine, quae est foro proxima, cum isdem angularibus octo, ex altera parte cum angularibus VI, ideo quod mediae duae in ea parte non sunt positae, ne inpediant aspectus pronai aedis Augusti, quae est in medio latere parietis basilicae conlocata spectans medium forum et aedem Iovis.
(비트루비우스 폴리오, 건축술에 관하여, LIBER QUINTUS, 1장24)
Quadratum enim ita ductae lineae in quattuor, pentagonum in quinque triangulos, exagonum in sex et ceteros in suorum angulorum modo mensuraque per triangulos partiuntur, ut est subiecta descriptio:
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:5)

SEARCH

MENU NAVIGATION