라틴어 문장 검색

Quoniam densitas Medii prope verticem Hyperbolae major est quam in loco A, ut servetur densitas mediocris, debet ratio minimae tangentium GT ad Tangentem AH inveniri, & densitas in A, per Regulam tertiam, diminui in ratione paulo minore quam semisummae Tangentium ad Tangentium AH.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 96:2)
Detur umbilicus S, punctum P, & tangens TR, & inveniendus sit umbilicus alter H. Ad tangentem demitte perpendiculum ST, & produc idem ad Y, ut sit TY aequalis ST, & erit YH aequalis axi transverso.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 34:1)
Dentur tangentes HI, KL & puncta B, C, D. Age BD tangentibus occurrentem in punctis H, K & CD tangentibus occurrentem in punctis I, L. Actas ita seca in R & S, ut sit HR ad KR ut est media proportionalis inter BH & HD ad mediam proportionalem inter BK & KD;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 61:1)
Gyretur corpus in circumferentia circuli, requiritur lex vis centripetae tendentis ad punctum aliquod in circumferentia datum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 49:1)
Sit enim APQ Parabola, S umbilicus ejus, A vertex principalis, P punctum contactus, PO ordinatim applicata ad diametrum principalem, PM tangens diametro principali occurrens in M, & SN linea perpendicularis ab umbilico in tangentem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 16:1)
ratione esse Tangentem anguli quo Spiralis praefinita, in Medio de quo egimus, secat radium AS, ad tangentem anguli quo Spiralis nova secat radium eundem in Medio proposito: Atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 17:6)
In circumferentia PHSh capiantur aequales arcus HI, IK vel hi, ik, eam habentes rationem ad circumferentiam totam quam habent aequales rectae EF, FG ad pulsuum intervallum totum BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:1)
Nam si A & P sint Puncta contactuum ubivis in tangentibus sita, & per punctorum H, I, K, L quodvis I agatur recta IY tangenti KL parallela & occurrens curvae in X & Y, & in ea sumatur IZ media proportionalis inter IX & IY:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 61:4)
vel transeat per duo puncta V, v, si dantur duae tangentes TR, tr, vel tangat circulum FG & transeat per punctum V, si datur punctum P & tangens TR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 12:7)
Hinc si agatur BC secans PQ in r, & in PT capiatur Pt in ratione ad Pr quam habet PT ad PR, erit Bt Tangens Conicae sectionis ad punctum B. Nam concipe punctum D coire cum puncto B ita ut, chorda BD evanescente, BT Tangens evadet;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 29:2)
Ergo tempus quo pulsus percurrit spatium BC, est ad tempus oscillationis unius ex itu & reditu compositae, ut BC ad Z × A ÷ PO, id est ut BC ad circumferentiam circuli cujus radius est A. Tempus autem, quo pulsus percurret spatium BC, est ad tempus quo percurret longitudinem huic circumferentiae aequalem, in eadem ratione;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:17)
Secet haec tangentes alias quasvis duas CD, FDE in L & K. Per tangentium non parallelarum CL, FK cum parallelis CF, KL concursus C & K, F & L age CK, FL concurrentes in R, & recta OR ducta & producta secabit tangentes parallelas CF, KL in punctis contactuum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 98:7)

SEARCH

MENU NAVIGATION