라틴어 문장 검색

Si vero inter iiij qui est tertius terminus aequa parte quarti quartum terminum superet et aequa primi a primo superetur, armonica huiusmodi proportio medietasque perspicitur, et quod continetur sub extremorum adgregatione et multiplicatione medietatis duplex est eo, quod sub utraque extremitate conficitur.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:6)
In alia quoque medietate idem est. Ponanturenim duo cybi et in medio eorum duae medietates, quas superius diximus:
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:18)
Licet enim luna in media lunatione non transeat nisi medietatem circuli sui, tamen motus augis ex opposito occurrens sibi complet aliam circuli medietatem.
(알베르투스 마그누스, De Fato, Art. 4. An fatum sit scibile 15:12)
Ubi autem termini duo duas medietates includunt, quod fit multiplicatis extremitatibus, hoc idem redditur in alterutram summam medietatibus ductis.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 2:5)
Quod enim sub duabus medietatibus continetur, aequale est ei, quod sub extremis conficitur, vel quod ab una medietate nascitur, aequale est illi, quod sub utrisque extremitatibus continetur.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 6:4)
In quattuor enim terminis si fuerit quemadmodum primus ad tertium sic secundus ad quartum, proportionum ratione scilicet custodita, geometrica medietas explicatur, et quod continetur sub extremitatibus, aequum erit ei, quod sub utraque medietate ad se invicem multiplicata conficitur.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:4)
bis enim iij senarius est. Et quotienscunque datis duobus tetragonis eorum medietatem volumus invenire, latera eorum multiplicanda sunt, et qui ex his procreabitur, medietas est. Si autem cybi sunt, ut viij et xxvij, duae tantum inter hos eadem proportione medietates constitui queunt, xij scilicet et xviij.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:15)
Nos tertium genus insitionis invenimus, quodcum sit subtilissimum, non omni generi arborum idoneum est, sed fere recipiunt talem insitionem, quae humidum succosumque et validum librum habent, sicut ficus.
(콜루멜라, 루키우스 유니우스 모데라투스, 농업론, 5권, 11장 8:4)
Qua vero disciplina huiusmodi medietates repperire possimus expediendum est. Datis duobus terminis si arithmeticam medietatem constituere oportebit, utraque est extremitas coniungenda quodque ex ea copulatione colligitur dividendum, isque numerus, qui ex divisioneredactus est, arithmeticam medietatem inter extremitates locatus efficiet;
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 5:1)
Namque minorem, id est binarium, uno superat, id est ipsius medietate binarii, a quaternario vero uno relinquitur, quae pars quaternarii quarta est. Recte igitur dictum est, medium terminum in huiusmodi medietate eadem sui parte et minorem vincere et a maiore superari, sed non eisdem partibus vel minoris minorem transgredi vel maioris a maiore transcendi.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:12)
Septies enim iiij xxviij sunt, qui est suis partibus par, habens j a se denominatum, id est vicesimum octavum, medietatem vero secundum binarium xiiij, secundum quaternarium vij, septimum vero secundum septenarium iiij, secundum omnium collectionem quartum decimum ij, qui vocabulo medietatis obponitur.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:9)
Senarii enim medietas ternarius est. In geometrica vero medietate neque eisdem suis partibus medius vel vincit minorem vel a maiore vincitur, neque eadem parte vel minoris minorem superat vel maioris a maiore relinquitur, sed qua parte sua medius terminus minorem superat, eadem parte sua maior terminus medium vincit, quod est ut medietas atque extremitas aequalibus medietatem et extremitatem reliquam suis partibus supervadant.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:16)
Geometrica medietas popularis quodammodo et exaequatae civitatis est. Namque vel in maioribus vel in minoribus aequali omnium proportionalitate componitur, et est inter omnes paritas quaedam medietatis aequum ius in proportionibus conservantis.
(보이티우스, De Arithmetica, Liber secundus, Quae medietates quibus rerum publicarum statibus comparentur 1:2)
In numero vero pariter inpari, si fuerit unus in medio terminus, circum se positiorum terminorum, si in unum redigantur, medietas est, et idem eorum quoque, qui super hos sunt terminos, medietas est, atque hoc usque ad extremos omnium terminorum, ut in eo ordine, qui est pariter inparium numerorum, ij vj x iunctus binarius cum denario xxj explet, cuius senarius medietas invenitur.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:15)
Est autem proprium huius medietatis, quod, si in tribus terminis speculatio sit, compositis extremitatibus illa summa, quae inter extremitates est, non loco tantum verum etiam sit quantitate medietas.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:1)

SEARCH

MENU NAVIGATION