라틴어 문장 검색

lineola HF vi resistentiae, & lineola FG vi gravitatis simul generantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 62:13)
& vis illa tota, hoc est pondus incumbens, qua lineola EG comprimitur, est ad pondus lineolae ut ponderis incumbentis altitudo A ad lineolae longitudinem EG;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:6)
Unde si ad aream ASEY addatur triangulum EYB, & de summa auferatur triangulum SEB, manebit area ASBY areae ASEY aequalis quamproximè, atque adeo ad aream ASCY ut AE ad AC.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 46:4)
Omnes enim tetragoni, qui sub triangulis sunt naturali ordinatione dispositi, ex superioribus triangulis procreantur illorumque collectione quadrati figura componitur.
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:2)
Ex quaternario quoque et senario denarius triangulus nascitur, et ad eundem ordinem cuncta triangulorum ratio constabit.
(보이티우스, De Arithmetica, Liber secundus, Quod ex quadratis et parte altera longioribus omnis formarum ratio consistat 1:3)
Jungatur AN, & ob aequales MS & SP, MN & NP, MA & AO, parallelae erunt rectae AN & OP, & inde triangulum SAN rectangulum erit ad A & simile triangulis aequalibus SMN, SPN.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 16:2)
Unde cum tangant insuper trianguli DEF anguli D, E, F trianguli abc latera ab, ac, bc respective, compleri potest figura ABCdef figurae abcDEF similis & aequalis, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 109:13)
in dimidiata ratione resistentiae) incrementum resistentiae data temporis particula factum per lineolam KL, & contemporaneum velocitatis incrementum per lineolam PQ;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 40:5)
triangula NBM, PBT similia sunt, ut & triangula NCM, PCR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 35:5)
Huic vero si consequentem quaternarium superposuero, denarius explicatur, qui est tertius actu triangulus, quos per latera disponens ad superioris descriptionis exemplar cunctos triangulos numeros sine ullius dubitationis erroribus pernotabis.
(보이티우스, De Arithmetica, Liber secundus, De generatione triangulorum numerorum 3:5)
Junge SC, & triangulum SBC, ob parallelas SB, Cc, aequale erit triangulo SBc, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 4:8)
adeoque ex aequo, vis qua lineola EG in locis suis P & S urgetur, est ad lineolae illius pondus ut HK × A ad V × EG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:7)
Quadratum enim ita ductae lineae in quattuor, pentagonum in quinque triangulos, exagonum in sex et ceteros in suorum angulorum modo mensuraque per triangulos partiuntur, ut est subiecta descriptio:
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:5)
Est igitur primus triangulus numerus, qui in solis tribus unitatibus dissipatur secundum superficiei positionem, triangula scilicet descriptione, et post hunc quicunque aequalitatem laterum in trina laterum spatia segregant.
(보이티우스, De Arithmetica, Liber secundus, Dispositio triangulorum numerorum 2:1)
& lineola HF ut resistentia & quadratum temporis, hoc est ut resistentia & lineola FG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 62:16)

SEARCH

MENU NAVIGATION