라틴어 문장 검색

Halleius autem recentissimè deprehendit esse 38' in Octantibus versus oppositionem Solis, & 32' in Octantibus Solem versus.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 46:18)
Decrementum autem in locis inter Octantes & Syzygias, & incrementum in locis inter Octantes & Quadraturas, est quam proxime ad hoc decrementum, ut motus totus in locis illis ad motum totum in Syzygiis & differentia inter quadratum Sinus distantiae Lunae à Quadratura & semissem quadrati Radii ad semissem quadrati Radii, conjunctim.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 7:13)
Hinc si detur densitas Fluidi in duobus locis, puta A & E, colligi potest ejus densitas in alio quovis loco Q. Centro S, Asymptotis rectangulis SQ, SX describatur Hyperbola secans perpendicula AH, EM, QT in a, e, q, ut & perpendicula HX, MY, TZ ad asymptoton SX demissa in h, m, & t.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 32:2)
& ad fili partem rectam PT, e punctis extremis P ac T, erigantur perpendicula PB, TW, occurrentia rectae CV in B & W. Patet enim ex genesi Cycloidis, quod perpendicula illa PB, TW, abscindent de CV longitudines VB, VW rotarum diametris OA, OR aequales, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 25:3)
Unde si Nodi in Quadraturis versentur, & capiantur loca duo aequaliter ab Octante hinc inde distantia, & alia duo à Syzygiâ & Quadraturâ iisdem intervallis distantia, deque decrementis motuum in locis duabus inter Syzygiam & Octantem, subducantur incrementa motuum in locis reliquis duobus, quae sunt inter Octantem & Quadraturam;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 7:14)
Asymptotis rectangulis CD, CH descripta Hyperbola quavis BbEe secante perpendicula AB, ab, DE, de, in B, b, E, e, exponantur velocitates initiales per perpendicula AB, DE, & tempora per lineas Aa, Dd. Est ergo ut Aa ad Dd ita (per Hypothesin) DE ad AB, & ita (ex natura Hyperbolae) CA ad CD;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 13:1)
& quaeratur resistentia corporis in loco quovis D. Secetur recta infinita OQ in punctis O, C, P, Q ea lege ut (si erigantur perpendicula OK, CT, PI, QE, centroque O & Asymptotis OK, OQ describatur Hyperbola TIGE secans perpendicula CT, PI, QE in T, I & E, & per punctum I agatur KF occurrens Asymptoto OK in K, & perpendiculis CT & QE in L & F) fuerit area Hyperbolica PIEQ ad aream Hyperbolicam PITC ut arcus BC descensu corporis descriptus ad arcum Ca ascensu descriptum, & area IEF ad aream ILT ut OQ ad OC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 30:3)
Spiris perfectis et conlocatis columnae sunt medianae in pronao et postico ad perpendiculum medii centri conlocandae, angulares autem quaeque e regione earum futurae sunt in lateribus aedis dextra ac sinistra, uti partes interiores, quae ad parietes cellae spectant, ad perpendiculum latus habeant conlocatum, exteriores autem partes uti dicant se earum contracturam.
(비트루비우스 폴리오, 건축술에 관하여, LIBER TERTIUS, 5장15)

SEARCH

MENU NAVIGATION