라틴어 문장 검색

Secundus vero et compositus et ipse quidem inpar est, propterea quod eadem inparis proprietate formatus est, sed nullam in se retinet substantiam principalem compositusque est ex aliis numeris habetque partes et a se ipso et ab alieno vocabulo denominatas;
(보이티우스, De Arithmetica, Liber primus, De secundo et composito 1:1)
Ac de inparibus numeris quantum introductionis permittebat brevitas expeditum est. Rursus numerorum parium sic fit secunda divisio.
(보이티우스, De Arithmetica, Liber primus, Alia partitio paris secundum perfectos, inperfectos et ultra quam perfectos 1:1)
Ad aliquid relatae vero quantitatis duplex est prima divisio.
(보이티우스, De Arithmetica, Liber primus, De relata ad aliquid quantitate. 1:1)
Inaequalis vero quantitatis gemina divisio est. Secatur enim quod inaequale est in maius atque minus, quae contraria sibimet denominatione funguntur.
(보이티우스, De Arithmetica, Liber primus, De relata ad aliquid quantitate. 2:1)
Non ergo inutiliter neque inprovide, qui de hoc mundo deque hac communi rerum natura ratiocinabantur, hanc primum totius mundi substantiae divisionem fecerunt.
(보이티우스, De Arithmetica, Liber secundus, Quod omnia ex eiusdem natura et alterius natura consistant idque in numeris primum videri 1:9)
Est illi hoc quoque solida proprietate coniunctum, quod quemadmodum sunt omnes termini huiusmodi dispositionis ad se ipsos, ita sunt differentiae ad differentias constitutae.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 5:1)
Haec autem proportionalitas et in aliis omnibus vel superparticularibus vel superpartientibus invenitur huiusmodi proprietate in omnibusconservata, ut in continua proportione, quod fit sub extremitatibus, si tres fuerint termini, hoc a medietate multiplicata consurgat.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:1)
Illic enim in omnibus vel multiplicibus vel superpartientibus vel superparticularibus vel in ceteris coniunctis geometrica proportionalitas custoditur has omnes proprietates, quas supra diximus, continens.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:5)
Quarta vero est proprietas huiusce medietatis, quod vel in maioribus vel in minoribus terminis aequales semper proportiones sunt.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:6)
Habet autem proprietatem, quemadmodum dictum est, contrariam arithmeticae medietati.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:1)
Habet autem aliam proprietatem armonica medietas, ut cum duas extremitates in unum redactas medietas multiplicaverit, dupla quantitas colligatur, quam si se multiplicent duae extremitates.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:18)
Ad aliquid autem considerationem armonicae proprie esse, in primi libri rerum omnium divisione monstravimus.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 1:4)
omnesque proprietates, quas supra diximus in medietate arithmetica convenire, ab hac huiusmodi dispositione non repperies alienas.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:7)
Quae omnes scilicet proprietates non alterius nisi arithmeticae medietatis sunt, quod, si superius dicta meminerit lector, ita esse indubitanter intelleget.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:14)
Rursus si inter eosdem x et xl xx constituam, statim geometrica medietas cum suis proprietatibus cunctis exoritur, arithmetica medietate pereunte.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 2:1)

SEARCH

MENU NAVIGATION