라틴어 문장 검색

Agatur enim DVQ, abscindens & velocitatis AP momentum PQ, & Sectoris DET momentum DTV dato temporis momento respondens:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 19:1)
& erit tempus ascensus futuri ut Hyperbolae sector TDE.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 21:9)
erit Hyperbolae hujus sector DET ut tempus descensus.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 23:7)
Igitur velocitas AP est ad velocitatem quam corpus tempore EDT, in spatio non resistente, ascendendo amittere vel descendendo acquirere posset, ut area trianguli DAP ad aream sectoris centro D, radio DA, angulo ADT descripti;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 26:2)
Nam velocitas in Medio non resistente, tempori atque adeo Sectori huic proportionalis est;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 26:4)
ubi quam minima est, accedit ad rationem aequalitatis, pro more Sectoris & Trianguli.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 26:7)
Si Medii densitas in locis singulis sit reciproce ut distantia locorum a centro immobili, sitque vis centripeta in duplicata ratione densitatis:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 7:1)
Et quoniam vis centripeta, qua corpus urgetur in P est reciproce ut SPq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:3)
& (per Lem. X. Lib. I.) lineola TQ, quae vi illa generatur, est in ratione composita ex ratione hujus vis & ratione duplicata temporis quo arcus PQ describitur, (Nam resistentiam in hoc casu, ut infinite minorem quam vis centripeta negligo) erit TQ × SPq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:4)
Vis resistentiae in loco quovis P, est ad vim centripetam in eodem loco ut ½OS ad OP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 11:2)
Data igitur Spirali datur proportio resistentiae ad vim centripetam, & viceversa ex data illa proportione datur Spiralis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 11:5)
Corpus itaque gyrari nequit in hac spirali, nisi ubi vis resistentiae minor est quam dimidium vis centripetae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 12:2)
Fiat resistentia aequalis dimidio vis centripetae & Spiralis conveniet cum linea recta PS, inque hac recta corpus descendet ad centrum, dimidia semper cum velocitate qua probavimus in superioribus in casu Parabolae (Theor. X. Lib. I.) descensum in Medio non resistente fieri.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 12:3)
Si Medii densitas in locis singulis sit reciproce ut dignitas aliqua distantiae locorum a centro, sitque vis centripeta reciproce ut distantia in dignitatem illam ducta:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 20:1)
Nam si vis centripeta in P sit reciproce ut distantiae SP dignitas quaelibet SP^{n + 1} cujus index est n + 1;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 21:2)

SEARCH

MENU NAVIGATION