라틴어 문장 검색

Sunto mutuae omnium attractiones acceleratrices ad invicem ut distantiae ductae in corpora trahentia, & ex praecedentibus facile deducetur quod corpora omnia aequalibus temporibus periodicis Ellipses varias, circa omnium commune gravitatis centrum B, in plano immobili describunt. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 36:2)
Corpora plura quorum vires decrescunt in duplicata ratione distantiarum ab eorundem centris, moveri posse inter se in Ellipsibus, & radiis ad umbilicos ductis Areas describere temporibus proportionales quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 38:1)
fieri potest ut corpora secundum legem hic positam se mutuo trahentia moveantur in Ellipsibus accurate, nisi servando certam proportionem distantiarum ab invicem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 39:3)
Pone corpora plura minora circa maximum aliquod ad varias ab eo distantias revolvi, tendantq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 40:2)
adeo donec orbes cum Ellipsibus quadrent, & areae respondeant temporibus, absq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 40:14)
Fingamus jam Systema corporum minorum modo jam descripto circa maximum revolventium, aliudve quodvis duorum circum se mutuo revolventium corporum Systema progredi uniformiter in directum, & interea vi corporis alterius longe maximi & ad magnam distantiam siti urgeri ad latus.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 41:2)
Et quoniam, ob exiguam partium illarum ab invicem distantiam, Systema totum ad modum corporis unius attrahitur, movebitur idem hac attractione ad modum corporis unius;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 41:7)
ullis erroribus, nisi quas partium distantiae (perexiguae sane & pro lubitu minuendae) valeant efficere. Q. E. O.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 41:10)
Maxime autem turbabuntur, ponendo quod attractiones acceleratrices partium Systematis versus corpus omnium maximum, non sint ad invicem reciproce ut quadrata distantiarum a corpore illo maximo;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 44:2)
praesertim si proportionis hujus inaequalitas major sit quam inaequalitas proportionis distantiarum a corpore maximo:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 44:3)
Si corpora tria, quorum vires decrescunt in duplicata ratione distantiarum, se mutuo trahant, & attractiones acceleratrices binorum quorumcunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 47:1)
in tertium sint inter se reciproce ut quadrata distantiarum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 47:2)
Sit QK mediocris distantia corporum P & Q;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 50:3)
& corporis P versus Q attractio acceleratrix in mediocri illa distantia exponatur per eandem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 50:4)
In duplicata ratione QK ad QP capiatur QL ad QK, & erit QL attractio acceleratrix corporis P versus Q in distantia quavis QP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 50:5)

SEARCH

MENU NAVIGATION