라틴어 문장 검색

Illi vero, qui sunt pares, quoniam binarii numeri formae sunt, quique ex his coacervati collectique in unam congeriem parte altera longiores numeri nascuntur, hi secundum ipsius binarii numeri naturam ab eiusdem substantiae natura discessisse dicuntur, putanturque alterius naturae esse participes idcirco, quoniam, cum latera tetragonorum ab aequalitate progressa in aequalitatempropriae latitudinis ambitum tendant, hi adiecto uno ab aequalitate laterum discesserunt atque ideo dissimilibus lateribus et quodammodo a se alteris coniunguntur.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:5)
Unde nunc nobis monstrandum est, hac gemina numerorum natura, quadratorum scilicet et parte altera longiorum cunctas numeri species cunctasque habitudines vel ad aliquid relatae quantitatis, ut multiplicium vel superparticularium et ceterorum, vel ad se ipsam consideratae, ut formarum, quas dudum in superiore disputatione descripsimus, informari, ut, quemadmodum mundus ex inmutabili mutabilique substantia, sic omnis numerus ex tetragonis, qui inmutabilitate perficiuntur, et ex parte altera longioribus, qui mutabilitate participiant, probetur esse coniunctus.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:8)
In sesqualtera vero duorum est differentia, in sesquitertia trium, in sesquiquarta quattuor et deinceps secundum superparticulares formas numerorum, quod ad differentias adtinet, uno tantum crescit adiectio numerum explicans naturalem.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 4:2)
Sin vero secundum tetragonum primo parte altera longiori compares et tertium secundo et quartum tertio et quintum quarto, easdem rursus proportiones effici pernotabis, quas in superiore forma descripsimus, sed hic differentiae ab unitate non inchoant, sed a binario numero in infinitum per eosdem calculos progrediuntur, eritque secundus primis duplu, tertius secundi sesqualter, quartus tertii sesquitertius, secundum eandem convenientiam, quae superius demonstrata est.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 8:1)
Sin vero inter secundum tertiumque tetragonum secundum parte altera longiorem ponas, sesqualterae comparationis ad utrosque forma componitur.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 21:3)
Est illi hoc quoque solida proprietate coniunctum, quod quemadmodum sunt omnes termini huiusmodi dispositionis ad se ipsos, ita sunt differentiae ad differentias constitutae.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 5:1)
Haec autem proportionalitas et in aliis omnibus vel superparticularibus vel superpartientibus invenitur huiusmodi proprietate in omnibusconservata, ut in continua proportione, quod fit sub extremitatibus, si tres fuerint termini, hoc a medietate multiplicata consurgat.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:1)
Illic enim in omnibus vel multiplicibus vel superpartientibus vel superparticularibus vel in ceteris coniunctis geometrica proportionalitas custoditur has omnes proprietates, quas supra diximus, continens.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:5)
Quarta vero est proprietas huiusce medietatis, quod vel in maioribus vel in minoribus terminis aequales semper proportiones sunt.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:6)
unde formae solidae tria intervalla dicuntur habere.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:6)
Habet autem proprietatem, quemadmodum dictum est, contrariam arithmeticae medietati.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:1)
Habet autem aliam proprietatem armonica medietas, ut cum duas extremitates in unum redactas medietas multiplicaverit, dupla quantitas colligatur, quam si se multiplicent duae extremitates.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:18)
omnesque proprietates, quas supra diximus in medietate arithmetica convenire, ab hac huiusmodi dispositione non repperies alienas.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:7)
Quae omnes scilicet proprietates non alterius nisi arithmeticae medietatis sunt, quod, si superius dicta meminerit lector, ita esse indubitanter intelleget.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:14)
Rursus si inter eosdem x et xl xx constituam, statim geometrica medietas cum suis proprietatibus cunctis exoritur, arithmetica medietate pereunte.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 2:1)

SEARCH

MENU NAVIGATION