라틴어 문장 검색

Sit enim APQ Parabola, S umbilicus ejus, A vertex principalis, P punctum contactus, PO ordinatim applicata ad diametrum principalem, PM tangens diametro principali occurrens in M, & SN linea perpendicularis ab umbilico in tangentem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 16:1)
Jungatur AN, & ob aequales MS & SP, MN & NP, MA & AO, parallelae erunt rectae AN & OP, & inde triangulum SAN rectangulum erit ad A & simile triangulis aequalibus SMN, SPN.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 16:2)
P corpus in perimetro Parabolae, & a loco Q in quem corpus proxime movetur, age ipsi SP Parallelam QR & perpendicularem QT, necnon Qv tangentiparallelam & occurrentem tum diametro YPG in v, tum distantiae SP in x.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 23:2)
& punctis P & Q coeuntibus, ratio Qv ad Qx (per Lem. 8.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 23:5)
÷ QR quae ultimo fit ubi coeunt puncta P & Q. Sed linea minima QR, dato tempore, est ut vis centripeta generans, hoc est (per Hypothesin) reciproce ut SPq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 28:3)
Vis centripeta tendens ad punctum S ea sit quae corpus p in orbita quavis data pq gyrare faciat, & cognoscatur hujus velocitas in loco p.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 49:1)
Sin tanta sit corporis velocitas ut latus rectum L aequale fuerit 2SP + 2KP, longitudo PH infinita erit, & propterea figura erit Parabola axem habens SH parallelum lineae PK, & inde dabitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 49:25)
Et si corpus illud vi aliqua extrinsecus impressa continuo perturbetur, innotescet cursus quam proxime, colligendo mutationes quas vis illa in punctis quibusdam inducit, & ex seriei analogia, mutationes continuas in locis intermediis aestimando.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 53:2)
Si ab Ellipseos vel Hyperbolae cujusvis umbilicis duobus S, H, ad punctum quodvis tertium V inflectantur rectae duae SV, HV, quarum una HV aequalis sit axi transverso figurae, altera SV a perpendiculo TR in se demisso bisecetur in T;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 3:1)
Datis umbilico & axibus transversis describere Trajectorias Ellipticas & Hyperbolicas, quae transibunt per puncta data, & rectas positione datas contingent.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 6:1)
P punctum per quod Trajectoria debet transire;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 8:3)
Nam Trajectoria descripta (eo quod PH + SP in Ellipsi, & PH - SP in Hyperbola aequatur axi) transibit per punctum P, & (per Lemma superius) tanget rectam TR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 8:12)
Et eodem argumento vel transibit eadem per puncta duo P, p, vel tanget rectas duas TR, tr. Q. E. F.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 8:13)
Circa datum umbilicum Trajectoriam Parabolicam describere, quae transibit per puncta data, & rectas positione datas continget.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 10:1)
Sit S umbilicus, P punctum & TR tangens trajectoriae describendae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 12:1)

SEARCH

MENU NAVIGATION