라틴어 문장 검색

Capiantur AH, Id aequales, & erigantur perpendicula AG, dK occurrentia lineis incidentiae & emergentiae GH, IK, in G & K. In GH capiatur TH aequalis IK, & ad planum Aa demittatur normaliter Tv. Et per Legum Corol. 2.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 9:1)
dico quod corpus, inclinando lineam incidentiae, reflectetur tandem, & angulus reflexionis fiet aequalis angulo incidentiae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 11:2)
Et sit ea lineae incidentiae GH obliquitas ad planum primum Aa, ut sinus incidentiae sit ad radium circuli, cujus est sinus, in ea ratione quam habet idem sinus incidentiae ad sinum emergentiae ex plano Dd, in spatium DdeE:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 13:5)
CDE curva linea quae circa axem AB revoluta describat superficiem quaesitam;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 20:3)
Datur ergo ratio incrementi lineae AD ad decrementum lineae DB;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 20:8)
superficies EF cogit corpus in se secundum lineam DF incidens pergere in linea FR, ad locum B. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 27:14)
Linearum igitur AB, Kk, Ll, Mm quadrata sunt ut earundem differentiae, & idcirco cum quadrata velocitatum fuerint etiam ut ipsarum differentiae, similis erit ambarum progressio.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 4:13)
Quo demonstrato, consequens est etiam ut areae his lineis descriptae sint in progressione consimili cum spatiis quae velocitatibus describuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 4:14)
Exponatur enim vis gravitatis per datam lineam AC;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 40:1)
ACK linea curva;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 62:2)
& FCf recta ipsam tangens in C. Fingatur autem corpus C nunc progredi ab A ad K per lineam illam ACK, nunc vero regredi per eandem lineam;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 62:4)
Et hinc si curva linea definiatur per relationem inter basem seu abscissam AB & ordinatim applicatam BC;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 67:2)
& quaeratur Medii densitas quae faciat ut Projectile moveatur in hac linea.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 77:3)
& tum demum si per omnia agatur Curva linea regularis NNXN, haec abscindet SX quaesitae longitudini AH aequalem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 100:11)
Ad OP demittantur perpendicula QD, SE, & linearum rationes ultimae erunt hujusmodi:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 5:1)

SEARCH

MENU NAVIGATION