라틴어 문장 검색

actione describat lineam curvam HI, & emergat secundum lineam IK.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 4:4)
& primo si attractio vel impulsus ponatur uniformis, erit (ex demonstratis Galilaei) curva HI Parabola, cujus haec est proprietas, ut rectangulum sub dato latere recto & linea IM aequale sit HM quadrato;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 4:7)
CDE curva linea quae circa axem AB revoluta describat superficiem quaesitam;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 20:3)
D, E curvae illius puncta duo quaevis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 20:4)
& propterea si in axe AB sumatur ubivis punctum C, per quod curva CDE transire debet, & capiatur ipsius AC incrementum CM, ad ipsius BC decrementum CN in data ratione;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 20:9)
punctum illud D tanget curvam quaesitam CDE, eandemq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 20:12)
Si corpus in superficiem quamvis CD, secundum lineam rectam AD lege quavis ductam incidens, emergat secundum aliam quamvis rectam DK, & a puncto C duci intelligantur lineae curvae CP, CQ ipsis AD, DK semper perpendiculares:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 23:2)
in eo cape Vr aequalem tGT ÷ N, & Projectile tempore DRTG perveniet ad punctum r, describens curvam lineam DraF, quam punctum r semper tangit;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 27:7)
velocitas ejus in puncto quovis r ut Curvae Tangens rL. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 27:9)
velocitas quacum corpus exire debet de loco D secundum rectam DP, ut in Medio uniformi resistente describat Curvam DraF, ea ipsa erit quacum exire debet de eodem loco D, secundum eandem rectam DR, ut in spatio non resistente describat Parabolam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 29:3)
& resistentia Medii ipso motus initio detur, inveniri potest Curva DraF, quam corpus idem describet.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 30:3)
Dein secando DC in A, ut sit CP × AC ad DP × DA in eadem illa ratione Gravitatis ad resistentiam, dabitur punctum A. Et inde datur Curva DraF.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 30:6)
Et contra, si datur curva DraF, dabitur & velocitas corporis & resistentia Medii in locis singulis r.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 31:2)
Unde liquet methodus determinandi Curvam DraF ex Phaenomenis quamproxime, & inde colligendi resistentiam & velocitatem quacum corpus projicitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 34:2)
& per puncta N, N, N agatur curva regularis NNN secans rectam SMMM in X, & erit SX vera ratio resistentiae ad gravitatem, quam invenire oportuit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 34:9)

SEARCH

MENU NAVIGATION