라틴어 문장 검색

id est ut axes minores directe & corporum velocitates in verticibus principalibus inverse, hoc est ut axes illi directe & ordinatim applicatae ad axes alteros inverse, & propterea (ob aequalitatem rationum directarum & inversarum) in ratione aequalitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 69:6)
Unde si per B ducatur tangenti parallela BF rectam quamvis AF per A transeuntem perpetuo secans in F, haec ultimo ad arcum evanescentem AB rationem habebit aequalitatis, eo quod completo parallelogrammo AFBD, rationem semper habet aequalitatis ad AD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 30:2)
At quoniam vires illae non sunt ad invicem in ratione CP ad sp, sed (ob similitudinem & aequalitatem corporum S & s, P & p, & aequalitatem distantiarum SP, sp) sibi mutuo aequales, corpora aequalibus temporibus aequaliter trahentur de Tangentibus;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 9:12)
Haec autem pars relatae ad aliquid quantitatis, id est aequalitas, naturaliter indivisa est. Nullus enim potest dicere, quod aequalitatis hoc quidem tale est, illud vero huiusmodi.
(보이티우스, De Arithmetica, Liber primus, De relata ad aliquid quantitate. 1:4)
Illi vero, qui sunt pares, quoniam binarii numeri formae sunt, quique ex his coacervati collectique in unam congeriem parte altera longiores numeri nascuntur, hi secundum ipsius binarii numeri naturam ab eiusdem substantiae natura discessisse dicuntur, putanturque alterius naturae esse participes idcirco, quoniam, cum latera tetragonorum ab aequalitate progressa in aequalitatempropriae latitudinis ambitum tendant, hi adiecto uno ab aequalitate laterum discesserunt atque ideo dissimilibus lateribus et quodammodo a se alteris coniunguntur.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:5)
Ita igitur, quoniam ex aequalitatis margine cunctas inaequalitatis species proficisci videmus, omnis a nobis inaequalitas ad aequalitatem velut ad quoddam elementum proprii generis resolvatur.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:9)
Quia sicut in his quae ex lege credi debent, quae tamen pro se rationem non habent, quaerere rationem stultum est, quia qui hoc facit, quaerit quod impossibile est inveniri, - et eis nolle credere sine ratione haereticum est, sic in his quae non sunt manifesta de se, quae tamen pro se rationem habent, eis velle credere sine ratione philosophicum non est, ideo - volentes sententiam christianae fidei de aeternitate mundi et sententiam Aristotelis et quorundam aliorum philosophorum reducere ad concordiam, ut sententia fidei firmiter teneatur quamquam in quibusdam demonstrari non possit, - ne incurramus stultitiam, quaerendo demonstrationem ubi ipsa non est possibilis, ne etiam incurramus haeresim, nolentes credere quod ex fide teneri debet, quia pro se demonstrationem non habet, sicut fuit mos quibusdam philosophis quibus nulla lex posita placuit, quia articuli legis positae pro se non habebant demonstrationem, ut etiam sententia philosophorum salvetur, quantum ratio eorum concludere potest, - nam eorum sententia in nullo contradicit christianae fidei nisi apud non intelligentes:
(Boethius De Dacia, DE MUNDI AETERNITATE, 1 1:1)

SEARCH

MENU NAVIGATION