라틴어 문장 검색

Ter enim tres si tertio duxeris, xxvij cybi figura producitur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:9)
huic oppositum contrariumque esse oportebit qui neque longitudinem latitudini neque haec duo profunditati gerat aequalia, sed cunctis inaequalibus, quamvis solida sit figura, ab aequalitate cybi longissime distare videatur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:2)
Vocant autem eandem figuram Graeci quidam spheniscon;
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:6)
Latini nomen hoc ita uniformiter compositum habere non possunt, ut tamen idem pluribus dictum sit. Ea namquc hoc nomine vocatur figura, quae alternatim positis latitudinibus continetur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:13)
quarum figurarum numerus hoc modo definiendus est:
(보이티우스, De Arithmetica, Liber secundus, De parte altera longioribus numeris eorumque generationibus 1:2)
Quos autem superius laterculos diximus, quae sunt et ipsae quidem solidae figurae, hoc modo fiunt, quotiens aequalibus spatiis in longitudinem latitudinemque porrectis minor his additur altitudo, ut sunt huius modi:
(보이티우스, De Arithmetica, Liber secundus, De generatione laterculorum eorumque definitione 1:1)
Asseres vero et ipsae quidem figurae sunt solidae sed hoc modo, ut ex aequalibus aequaliter ducantur in maius.
(보이티우스, De Arithmetica, Liber secundus, De generatione laterculorum eorumque definitione 1:5)
Nam si aequa fuerit latitudo longitudini et maior sit altitudo, illae figurae a nobis asseres, a Graecis docides nominantur.
(보이티우스, De Arithmetica, Liber secundus, De generatione laterculorum eorumque definitione 1:6)
Ac de solidis quidem figuris haec ad praesens dicta sufficiant.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:1)
At uterque figuram continet parte altera longiorem.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum quadrati ex parte altera longioribus vel parte altera longiores ex quadratis fiant 1:2)
Nam si omnes ab unitate inpares disponantur, iuncti figuras cybicas explicabunt.
(보이티우스, De Arithmetica, Liber secundus, Cybos eiusdem participare substantiae, quod ab inparibus nascantur 1:2)
Omnes enim planae figurae, quae nulla altitudine crescunt, una tantum medietate geometrica continuantur;
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:2)
Recte igitur et planae figurae duobus intervallis et solidae tribus contineri dicuntur.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:8)
Adde quod hoc ipsum breuis habitaculi saeptum plures incolunt nationes lingua, moribus, totius uitae distantes, ad quas tum difficultate itinerum tum loquendi diuersitate tum commercii insolentia non modo fama hominum singulorum sed ne urbium quidem peruenire queat.
(보이티우스, De philosophiae consolatione, Liber Secundus, XIII 1:11)
Coniuncta uero naturarum ipsa diuersitas inuicem discors dissociaret atque diuelleret nisi unus esset qui quod nexuit contineret.
(보이티우스, De philosophiae consolatione, Liber Tertius, XXIII 1:12)

SEARCH

MENU NAVIGATION