라틴어 문장 검색

& hic sinus ad sinum emergentiae ex plano quarto Dd, in data ratione;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 6:6)
Minuatur jam planorum intervalla & augeatur numerus in infinitum, eo ut attractionis vel impulsus actio secundum legem quamcunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 6:9)
Capiantur AH, Id aequales, & erigantur perpendicula AG, dK occurrentia lineis incidentiae & emergentiae GH, IK, in G & K. In GH capiatur TH aequalis IK, & ad planum Aa demittatur normaliter Tv. Et per Legum Corol. 2.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 9:1)
distinguatur motus corporis in duos, unum planis Aa, Bb, Cc &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 9:2)
Nam concipe corpus inter plana parallela Aa, Bb, Cc &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 13:1)
inter plana Cc, Dd describendo arcum Parabolae QRq, cujus vertex principalis (juxta demonstrata Galilaei) est in R;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 13:10)
secabit planum Cc in eodem angulo in q, ac prius in Q;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 13:11)
arcubus prioribus QP, PH similibus & aequalibus, secabit reliqua plana in iisdem angulis in p, h &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 13:13)
tandem eadem obliquitate in h, qua incidit in H. Concipe jam planorum Aa, Bb, Cc, Dd, Ee intervalla in infinitum minui & numerum augeri, eo ut actio attractionis vel impulsus secundum legem quamcunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 13:16)
Posito quod vis gravitatis in Medio aliquo similari uniformis sit, ac tendat perpendiculariter ad planum Horizontis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 25:1)
Projiciantur corpora duo similia & aequalia eadem cum velocitate, de loco D, secundum angulos diversos CDP, cDp (minuscularum literarum locis subintellectis) & cognoscantur loca F, f, ubi incidunt in horizontale planum DC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 34:3)
Tendat uniformis vis gravitatis directe ad planum Horizontis, sitq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 60:1)
Sit AK planum illud plano Schematis perpendiculare;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 62:1)
& a punctis C, G, g, ad planum horizontale AK demittantur perpendicula CB, GD, gd, quorum GD ac gd tangenti occurrant in F & f.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 62:9)
Et hinc colligitur, quod si in Cf capiatur Ck aequalis CF, & ad planum horizontale AK demittatur perpendiculum ki, secans curvam ACK in l;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 65:2)

SEARCH

MENU NAVIGATION