라틴어 문장 검색

numerus revolutionum quas corpus intra circulorum circumferentias complere potest, est ut PS ÷ OS, sive ut Tangens anguli quem Spiralis continet cum radio PS;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 14:3)
Bisecetur AB in C, & punctum C repraesentabit infimum Cycloidis punctum, & erit CD ut vis a gravitate oriunda, qua corpus in D secundum Tangentem Cycloidis urgetur, eamque habebit rationem ad longitudinem Penduli quam habet vis in D ad vim gravitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:2)
Quod si figura DNFB ejusmodi sit ut, si ab ejus puncto quovis N ad axem AB demittatur perpendiculum NM, & a puncto dato G ducatur recta GR quae parallela sit rectae figuram tangenti in N, & axem productum secet in R, fuerit MN ad GR ut GR cub.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 34:1)
Curvaturas linearum pono esse inter se in ultima proportione Sinuum vel Tangentium angulorum contactuum ad radios aequales pertinentium, ubi radii illi in infinitum diminuuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 40:2)
Id quod satis accuratè fiet, si tangens anguli CSP diminuatur in dimidiata ratione numeri 10973 ad numerum 11073, id est in ratione numeri 68-5958/10000 ad numerum 68-11/12.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 46:7)
Nam si Luna uniformi cum motu perambulet semicirculum QAq, summa omnium arearum PDdM, quo tempore Luna pergit à Q ad M, erit area QMdE quae ad circuli tangentem QE terminatur;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 55:6)
dein Luna pergente ab n ad q, linea PD cadet extra circulum, & aream nqe ad circuli tangentem qe terminatam describet;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 55:8)
Nam si PF tangat circulum in P, & producta occurrat TN in F, & pf tangat Ellipsin in p & producta occurrat eidem TN in f, conveniant autem hae Tangentes in axe TQ ad Y;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 5:1)
Igitur cum, in data Nodorum positione, summa omnium arearum pDdm, quo tempore Luna pergit à Quadratura ad locum quemvis m, sit area mpQEd, quae ad Ellipseos Tangentem QE terminatur;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 6:2)
) ut tangens DG ad circuli BED circumferentiam totam, atque angulus iste ad motum medium Nodorum addatur;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 17:16)
Ideoque contentum sub longitudine in Tangente descripta & longitudine S[mu], esset ad contentum sub longitudinibus AC & SM, ut area ASC[mu] ad triangulum ASCM, id est ut SN ad SM.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:3)
Quare AC est ad longitudinem in tangente descriptam ut S[mu] ad SN.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:4)
Cum autem velocitas Cometae in altitudine SP sit ad velocitatem in altitudine S[mu] in dimidiata ratione SP ad S[mu] inversè, id est in ratione S[mu] ad SN, longitudo hac velocitate eodem tempore descripta, erit ad longitudinem in Tangente descriptam ut S[mu] ad SN.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:5)
Igitur AC & longitudo hac nova velocitate descripta, cum sint ad longitudinem in Tangente descriptam in eadem ratione, aequantur inter se. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:6)
In longitudine media tB sumatur utcunque punctum B, & inde versus Solem S ducatur linea BE, quae sit ad Sagittam tV, ut contentum sub SB & St quadrato ad cubum hypotenusae trianguli rectanguli, cujus latera sunt SB & tangens latitudinis Cometae in observatione secunda ad radium tB.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 6:2)

SEARCH

MENU NAVIGATION