라틴어 문장 검색

Qua vero disciplina huiusmodi medietates repperire possimus expediendum est. Datis duobus terminis si arithmeticam medietatem constituere oportebit, utraque est extremitas coniungenda quodque ex ea copulatione colligitur dividendum, isque numerus, qui ex divisioneredactus est, arithmeticam medietatem inter extremitates locatus efficiet;
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 5:1)
Omnis enim multorum angulorum forma ex sui generis figura unitati superposita ab uno ingredientibus ad pyramidum constituendas figuras usque in infinita progreditur et ex hoc equidem apparere necesse est, triangulas formas ceterarum figurarum esse principium, quod omnis pyramis a quacunque basi profecta vel a quadrato, vel a pentagono, vel ab exagono, vel ab eptagono vel a quocunque similium solis triangulis usque ad verticem continetur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 7:2)
Namque minorem, id est binarium, uno superat, id est ipsius medietate binarii, a quaternario vero uno relinquitur, quae pars quaternarii quarta est. Recte igitur dictum est, medium terminum in huiusmodi medietate eadem sui parte et minorem vincere et a maiore superari, sed non eisdem partibus vel minoris minorem transgredi vel maioris a maiore transcendi.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:12)
Septies enim iiij xxviij sunt, qui est suis partibus par, habens j a se denominatum, id est vicesimum octavum, medietatem vero secundum binarium xiiij, secundum quaternarium vij, septimum vero secundum septenarium iiij, secundum omnium collectionem quartum decimum ij, qui vocabulo medietatis obponitur.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:9)
Senarii enim medietas ternarius est. In geometrica vero medietate neque eisdem suis partibus medius vel vincit minorem vel a maiore vincitur, neque eadem parte vel minoris minorem superat vel maioris a maiore relinquitur, sed qua parte sua medius terminus minorem superat, eadem parte sua maior terminus medium vincit, quod est ut medietas atque extremitas aequalibus medietatem et extremitatem reliquam suis partibus supervadant.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:16)
Geometrica medietas popularis quodammodo et exaequatae civitatis est. Namque vel in maioribus vel in minoribus aequali omnium proportionalitate componitur, et est inter omnes paritas quaedam medietatis aequum ius in proportionibus conservantis.
(보이티우스, De Arithmetica, Liber secundus, Quae medietates quibus rerum publicarum statibus comparentur 1:2)
In numero vero pariter inpari, si fuerit unus in medio terminus, circum se positiorum terminorum, si in unum redigantur, medietas est, et idem eorum quoque, qui super hos sunt terminos, medietas est, atque hoc usque ad extremos omnium terminorum, ut in eo ordine, qui est pariter inparium numerorum, ij vj x iunctus binarius cum denario xxj explet, cuius senarius medietas invenitur.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:15)
Est autem proprium huius medietatis, quod, si in tribus terminis speculatio sit, compositis extremitatibus illa summa, quae inter extremitates est, non loco tantum verum etiam sit quantitate medietas.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:1)
Idem si a tetragona basi proficiscatur et ad unum verticem eius lineae dirigantur, erit pyramis quattuor triangulorum per latera, uno tantum tetragono in basi posito, super quam ipsa figura fundata est. Et si a pentagono surgant v lineae, quinque rursus pyramis triangulis continebitur, et si ab exagono, sex triangulis nihilominus;
(보이티우스, De Arithmetica, Liber secundus, De his pyramidis, quae a quadratis vel a ceteris multiangulis proficiscuntur figuris 2:1)
et rursus illorum, qui sunt super secundo loco iunctos, cum ipsi quoque sint compositi, prior his numerus medietatis loco est, et hoc erit, usquidem occurrens unitas terminum ponat, ut si ponat quis quinarium numerum, altrinsecus circa ipsum sunt sumper iiij inferius vi. Hi ergo si uncat sint, faciunt x, quorum v numerus medietas est. Qui autem circa ipsos id est circa vi et iiij sunt, iij silicet et vij, idem is iuncti sint, eorum quinarius numerus medietas est;
(보이티우스, De Arithmetica, Liber primus, De principalitate unitatis 1:3)

SEARCH

MENU NAVIGATION