라틴어 문장 검색

Hoc est, vis centripeta quae deberet esse ponderis pars 4/505 est tantum pars 1/290, & propterea dico, secundum Regulam auream, quod si vis centrifuga 4/505 faciat ut altitudo aquae in crure ACca superet altitudin aquae in crure QCcq parte centesima totius altitudinis:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 33:7)
Si Sphaericum est manebit sphaericum, non obstante pressione;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 21:4)
Ut si corpus sphaericum A sit triplo majus corpore sphaerico B, habeatq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 23:1)
Partes igitur duae quaevis sphaericae non contiguae, quia pars sphaerica intermedia tangere potest utramque, prementur eadem vi. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 8:6)
Et viceversa, si datur proportio resistentiae ad datam quamvis vim centripetam, datur tempus AC, quo vis centripeta resistentiae aequalis generare possit velocitatem quamvis AB;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 9:2)
Nam partes duae quaevis tangi possunt a partibus Sphaericis in punctis quibuscunque, & ibi partes illas Sphaericas aequaliter premunt, per Casum 3.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 9:4)
Si Fluidi Sphaerici, & in aequalibus a centro distantiis homogenei, fundo sphaerico concentrico incumbentis partes singulae versus centrum totius gravitent;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 15:1)
Ergo si ex aucta solidi Sphaerici magnitudine augeatur ejus resistentia in ratione duplicata, resistentia solidi Sphaerici dati ex diminuta magnitudine particularum Fluidi, nullatenus minuetur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 73:2)
vis, qua corpusculum situm in I trahitur a Sphaera tota, erit ad vim qua trahitur in P, in ratione composita ex dimidiata ratione distantiae SI ad distantiam SP & ratione dimidiata vis centripetae in loco I, a particula aliqua in centro oriundae, ad vim centripetam in loco P ab eadem in centro particula oriundam, id est, ratione dimidiata distantiarum SI, SP ad invicem reciproce.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 102:2)
Designet igitur ABKI corpus Sphaericum centro C semidiametro CA descriptum, & incidant particulae Medii data cum velocitate in corpus illud Sphaericum, secundum rectas ipsi AC parallelas:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 28:7)
Hinc etiam si corpus, vi centripeta quae sit reciproce ut quadratum altitudinis, revolvatur in Ellipsi umbilicum habente in centro virium, & huic vi centripetae addatur vel auferatur vis alia quaevis extranea;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 23:2)
Quoniam vis centripeta corporis centralis S, qua corpus P retinetur in Orbe suo, augetur in quadraturis per additionem vis LM, ac diminuitur in Syzygiis per ablationem vis KL, & ob magnitudinem vis KL, magis diminuitur quam augeatur, est autem vis illa centripeta (per Corol.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 58:2)

SEARCH

MENU NAVIGATION