라틴어 문장 검색

÷ {nn - n}XVG} habente.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 104:7)
Et resistentia in G erit ad vim Gravitatis ut TG ad {{3nn - 3n} ÷ {n - 2}}VG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 104:8)
Et si tempus exponatur per aream Hyperbolicam ABED uniformiter crescentem;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 4:3)
Igitur si datis punctis A, G, exponatur tempus per aream Hyperbolicam ABED, exponi potest velocitas per ipsius GD reciprocam 1 ÷ GD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 6:2)
In Asymptoto CD detur punctum R, & erecto perpendiculo RS, quod occurrat Hyperbolae in S, exponatur descriptum spatium per aream Hyperbolicam RSED;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 10:1)
Igitur si velocitas exponatur per longitudinem GD, spatium descriptum erit ut area Hyperbolica DESR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 12:2)
Et propterea densitas in P est reciproce ut SP^n.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 21:5)
Et si lineae SA, SE, SQ obtinent alium quemvis ordinem in serie continue proportionalium, lineae AH, EM, QT, ob proportionales areas Hyperbolicas, obtinebunt eundem ordinem in alia serie quantitatum continue proportionalium.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 32:6)
in infinitum, & rectangula illa evadent aequalia areae Hyperbolicae zthn, adeoque huic areae proportionalis est differentia Aa - Ff. Sumantur jam distantiae quaelibet, puta SA, SD, SF in Progressione Musica, & differentiae Aa - Dd, Dd - Ff erunt aequales;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 36:30)
Et universaliter, si D ponatur pro distantia, & E pro densitate Fluidi compressi, & vires centrifugae sint reciproce ut distantiae dignitas quaelibet Dn, cujus index est numerus n;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 46:3)
Et si perpendiculo RG abscindatur area Hyperbolica PIGR, quae sit ad aream PIEQ ut arcus quilibet CD ad arcum BC descensu toto descriptum:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 30:5)
erit N locus ad quem corpus deinceps absque ulteriore resistentia ascenderet, & MN erit decrementum ascensus ex velocitatis illius amissione oriundum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:12)
In CR capiatur CT longitudinis cujusvis, & erigatur perpendiculum TV abscindens aream Hyperbolicam PCTV, & sit CZ latus hujus areae applicatae ad rectam PC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 37:4)
quadratis reciprocè proportionalia, & per terminos perpendicularium duci intelligatur linea curva Hyperbolica;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 6:11)
id est, si ad constituendum Medium uniformiter fluidum orbium numerus augeatur & latitudo minuatur in infinitum, ut areae Hyperbolicae his summis Analogae AaQ, BbQ, CcQ, DdQ, EeQ, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 6:13)

SEARCH

MENU NAVIGATION