라틴어 문장 검색

Quarta vero est proprietas huiusce medietatis, quod vel in maioribus vel in minoribus terminis aequales semper proportiones sunt.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:6)
Geometrica medietas popularis quodammodo et exaequatae civitatis est. Namque vel in maioribus vel in minoribus aequali omnium proportionalitate componitur, et est inter omnes paritas quaedam medietatis aequum ius in proportionibus conservantis.
(보이티우스, De Arithmetica, Liber secundus, Quae medietates quibus rerum publicarum statibus comparentur 1:2)
Differentiae duplae       Differentiae triplae
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 2:1)
Illa est enim vere proportionalitas, quae medietatis quodammodo locum obtinens et in maioribus et in minoribus aequalibus proportionum comparationibus continetur.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:7)
Senarii enim medietas ternarius est. In geometrica vero medietate neque eisdem suis partibus medius vel vincit minorem vel a maiore vincitur, neque eadem parte vel minoris minorem superat vel maioris a maiore relinquitur, sed qua parte sua medius terminus minorem superat, eadem parte sua maior terminus medium vincit, quod est ut medietas atque extremitas aequalibus medietatem et extremitatem reliquam suis partibus supervadant.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:16)
Quaerit enim, ut quemadmodum sunt ad se extremi termini, sic maioris ad medium differentia contra differentiam medietatis ad ultimum.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 1:3)
Horum igitur si differentias colligamus et ad se invicem comparemus, epitrita proportio colligetur, unde diatessaron symphonia resonabit.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 3:2)
Et quoniam triplus duas continet consonantias, diapente scilicet et diapason, in huius triplicis dispositione in differentiis eundem rursus triplum repperiemus, secundum subter descriptum modum.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 7:1)
Nam in duplici proportione medius terminus ad minoris suique differentiam quadruplus invenitur.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 9:2)
Namque in dispositione ij iij vj extremorum differentia est, id est senarii et binarii, iiij;
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 10:2)
minor vero differentia, id est ternarii et binarii, unus iiij autem uno quadrupla maior est relatione, quae comparatio bis diapason consonantiam tenet.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 10:3)
Omnis enim cybus habet latera xij angulos viij superficies vj. Hic autem ordo et dispositio armonica est. Disponantur enim vj viij xij. Hic ergo quemadmodum est maior terminus ad parvissimum, ita differentia maioris et medii ad medii ac parvissimi comparatur.
(보이티우스, De Arithmetica, Liber secundus, De geometrica armonia 1:4)
Perpensi namque xij ad vj dupli sunt, differentia vero duodenarii et octonarii quaternarius est, octonarii vero et senarii duo. Dupla autem ratione distabunt duobus quattuor comparati.
(보이티우스, De Arithmetica, Liber secundus, De geometrica armonia 1:5)
Diapason vero et diapente, quae triplicis obtinent rationem, fit ab extremitatum differentia ad differentiam minorem.
(보이티우스, De Arithmetica, Liber secundus, De geometrica armonia 2:4)
Illa vero maior consonantia, quae est bis diapason, quae ex quadruplo fit, in medii termini, id est octonarii, et eius differentiae comparatione perspicitur, quae inter octonarium senariumque repperitur.
(보이티우스, De Arithmetica, Liber secundus, De geometrica armonia 2:7)

SEARCH

MENU NAVIGATION