라틴어 문장 검색

Ponatur itaque primo primus aequalis, id est unus, secundus vero primo et secundo, id est ij, tertius vero primo, duobus secundis et tertio par sit, id est uni et duobus unis et uni, quod sunt iiij ut est descriptio.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 3:1)
Fac rursus idem de duplicibus, ut sit primus primo aequalis, id est uni, secundus primo et secundo, id est uni et duobus, qui sunt tres, tertius primo, id est uni, duobus secundis, id est iiij, et tertio, id est iiij, qui simul viiij fiunt, et venit haec formula.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 6:2)
Si vero qui ex aequalibus nati sunt multiplices, eos disponamus et secundum haec praecepta vertamus, ita ut converso sint ordine, sesqualter ex duplici procreabitur, sesquitertius ex triplici, sesquiquartus ex quadruplo.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 15:2)
Sint enim iij duplices termini, qui ex aequalibus creati sunt, et qui ultimus est, primus ponatur hoc modo:
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 15:3)
et si sit superparticularis sesquiquartus, primo ad sesquitertium, inde ad sesqualterum, postremo ad tres aequales terminos redire.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:14)
Ex hoc igitur principio, id est ex unitate, prima omnium longitudo succrescit, quae a binarii numeri principio in cunctos sese numeros explicat, quoniam primum intervallum linea est. Duo vero intervalla sunt longitudo et latitudo, id est linea et superficies.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:24)
longitudo, latitudo, altitudo, id est linea, superficies atque soliditas.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:26)
Est enim in longitudine ante et retro, in latitudine sinistra et dextera, in altitudine sursum ac deorsum.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:31)
Necesse est autem, ut quicquid fuerit solidum corpus, hoc habeat longitudinem latitudinemque et altitudinem, et quicquid haec tria in se continet, illud suo nomine solidum vocetur.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:32)
Omnis enim superficies sola longitudine et latitudine continetur.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:35)
Omne enim quod superficies est, longitudinem et latitudinem retinet, et quod haec retinet, illud est superficies.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:37)
Haec autem superficies uno tantum intervallo solidi corporis demensione superatur, quae uno rursus intervallo lineam vincit, quae longitudinis naturam retinens latitudinis expers est;
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:38)
Quare si punctum uno quidem intervallo a linea supergreditur, idem a superficie vincitur duobus, tribus vero intervalli demensionibus a soliditate relinquitur, constat punctum ipsum sine ulla corporis magnitudine vel intervalli demensione, cum et longitudinis et latitudinis et profunditatis expers sit, omnium intervallorum esse principium et natura insecabile, quod Graeci atomon vocant, id est ita deminutum atque parvissimum, ut eius pars inveniri non possit.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:41)
Superficies quoque numerorum, cum ipsa solidum corpus non sit, additi tamen latitudini solidi corporis caput est. Hoc autem planius his exemplis liquebit.
(보이티우스, De Arithmetica, Liber secundus, De numero lineari 1:2)
Plana vero superficies in numeris invenitur, quotiens a tribus inchoatione facta addita descriptionis latitudine insequentium se naturalium numerorum multitudine anguli dilatantur, ut sit primus triangulus numerus, secundus quadratus, tertius qui sub quinque angulis continetur, quem pentagonum Graeci nominant, quartus exagonus, id est qui sex angulis includitur et ceteri eodem modo singillatim per naturalem numerum angulos augeant in plana scilicet descriptione figurarum.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:1)

SEARCH

MENU NAVIGATION