라틴어 문장 검색

Et secundum quantitatem quoque numeri eodem modo est. Quantum enim tres superant binarium, tantum binarius unitatem, et quanto unus a duobus minor est, tanto binarius a ternario superatur.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:16)
Hi namque omnes quaternaria sese numerositate transcendunt, quod idcirco contingit, quoniam primi qui positi sunt, id est eorum fundamenta, binario se numero praecedebant, quos quoniam per binarium multiplicavimus, in quaternarium faciunt summam.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:8)
Rursus si inter eosdem x et xl xx constituam, statim geometrica medietas cum suis proprietatibus cunctis exoritur, arithmetica medietate pereunte.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 2:1)
Nam in hac dispositione ij iiij v quaternarius ad binarium duplus est. Sed inter quaternarium et binarium ij sunt, inter quaternarium vero et maiorem terminum, id est quinque, j. Et ij ad j dupli sunt.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 2:3)
Nunc vero de proportionalitatibus deque medietatibus dicendum est, et primum quidem de ea medietate tractabimus, quae secundum quantitatis aequalitatem neglecta proportionis parilitate constitutorum terminorum habitudines servat.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:1)
Habet autem aliam proprietatem armonica medietas, ut cum duas extremitates in unum redactas medietas multiplicaverit, dupla quantitas colligatur, quam si se multiplicent duae extremitates.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:18)
At vero si fuerint medietas et duplus, inter duplicem et medium potest una medietas talis inveniri, quae ad alteram extremitatem sesqualtera sit, ad alteram sesquitertia.
(보이티우스, De Arithmetica, Liber secundus, Quod multiplex intervallum ex quibus superparticularibus medietate posita intervallis fiat eiusque inveniendi regula. 2:2)
quanto unus tribus minor est, tanto binarius quaternario, vel quanto ternarius unitatem superat, tanto binarium transgreditur quaternarius.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:26)
Si ad latitudinem respicias, ubi est duorum terminorum una medietas, ipsosque terminos iungas, duplos eos medietate propria repperies, ut xxxvj et xx faciunt lvj, quorum medietas est xxviij, qui medius est inter eos terminus constitutus.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 1:2)
Namque ex uno primo tetragono et binario primo parte altera longiore ternarius triangulus copulatur, et ex binario et quaternario, id est ex secundo tetragono senarius triangulus procreatur.
(보이티우스, De Arithmetica, Liber secundus, Quod ex quadratis et parte altera longioribus omnis formarum ratio consistat 1:2)
Et sint quidem primo pares positae quaedam extremitates, inter quas has omnes medietates oporteat internectere, x et xl. Prius igitur arithmetica medietas aptetur.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:4)
Si vero inter iiij qui est tertius terminus aequa parte quarti quartum terminum superet et aequa primi a primo superetur, armonica huiusmodi proportio medietasque perspicitur, et quod continetur sub extremorum adgregatione et multiplicatione medietatis duplex est eo, quod sub utraque extremitate conficitur.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:6)
In alia quoque medietate idem est. Ponanturenim duo cybi et in medio eorum duae medietates, quas superius diximus:
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:18)
Primus ergo duplex est binarius numerus, qui unum solum sesqualterum recipit, id est ternarium, binarius enim contra ternarium comparatus sesqualteram efficit proportionem.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 2:4)
Licet enim luna in media lunatione non transeat nisi medietatem circuli sui, tamen motus augis ex opposito occurrens sibi complet aliam circuli medietatem.
(알베르투스 마그누스, De Fato, Art. 4. An fatum sit scibile 15:12)

SEARCH

MENU NAVIGATION