라틴어 문장 검색

Illud quoque nulla possumus oblivione transimittere, quod in hoc numero respondentibus sibi invicem partibus multiplicatis maior extremitas eiusdem numeri summaque conficitur.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 16:1)
Et primum si pares fuerint dispositiones medii multiplicantur atque deinde qui super ipsos sunt et usque ad supradictas extremitates.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 16:2)
In hoc enim numero meidetates sunt viij scilicet et xvi, quae in se multiplicatae maioris summam crescente pluralitate conficient.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 16:4)
Ocites enim xvi vel sedecies viij, si multiplices, cxxviij summa concrescet, atque hi numeri, qui super eosdem sunt, si multiplicentur, idem faciunt.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 16:5)
centies vicies atque octies unitate multiplicata nihil de priore quantitate mutabitur.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 16:8)
Rusus bis xxxii facti a lxiiij non discedunt, et tricies bis ii eosdem cumulant, et semel lxiiij vel untias sexagies quater multiplicata eundem numerum sine ulla variatate restituent.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 17:4)
Namque hi si per binarium numerum multiplicentur, omnes pariter inpares rite pluralitas demensa sufficiet.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 2:2)
Hi namque omnes quaternaria sese numerositate transcendunt, quod idcirco contingit, quoniam primi qui positi sunt, id est eorum fundamenta, binario se numero praecedebant, quos quoniam per binarium multiplicavimus, in quaternarium faciunt summam.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:8)
Igitur in naturalis numeri dispositione pariter inpares numeri quinto loco as se distant, solix iiij se praecedunt, iij in medio transeuntes, per binarum numerum multiplicatis inparibus procreati.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:9)
In ea enim dispositione, quae est par ut ij iiij viij xvj, idem reddunt ij per xvj multiplicati, quod iiij per octinarium ducti, utroque enim modo xxxij fient.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:12)
His igitur ita positis si primus primi multiplicatione concrescat, id est si quaternarii ternarius, vel si idem primus secundi, id est octonarii ternarius, ve si idem primus tertii, id est ternarius sedecimi, et idem usque ad ultimum, vel si secundus primi, vel si secundus secundi, vel si secundus tertii et eadem usque ad extremum multiplicatio proferatur, vel si tertius a primo ichoans usque in extremum transeat atque ita quartus et omnes in ordinem superiores multiplicent eos, qui sub ipsis in dispositoine sunt, omnes inpariter pares procreabuntur Huius autem rei tale sumamus exemplum.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 5:1)
Si iij quater multiplices xij fient, vel si v quattuor mltiplicent xx numerus excrescet, vel si item vij multiplicent iiij, xxviij succrescet, atque hoc usque in finem.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 5:2)
Rurus si viij multiplicent iij nascentur xxiiij;
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 5:3)
quantoscunque in ordine pariter parium numerorum ternarius numerus multiplicavit, quicunque ex eo procreati sunt, primo sunt versu dispositi;
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 6:6)
Rursus si ad longitudinem respicias, ubi duo termini unam medietatem habent, quod fit ex multiplicatis extremitatibus, hoc sit, si medius terminus suae capiat pluralitatis augmenta.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 2:1)

SEARCH

MENU NAVIGATION