라틴어 문장 검색

Si enim quis duplicet v, faciet x, si iij, faciet vj, qui x contra senarium comparati superbipartientem faciunt habitudinem.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:2)
Et hos ipsos rursus si duplicaveris, idem ordo proportionis adcrescit, idemque si infinitum facias, statum prioris habitudinis non mutabit.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:3)
qui dicitur supertripartiens, is sit supertriquartus, et qui dicitur superquadripartiens, idem dicatur superquadriquintus, eademque similitudine usque in infinitum nomina producantur.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 7:5)
et quotiens totum numerum in semet ipso continuerit per multiplicis numeri species appellabitur, quam vero partem comparati numeri clauserit, secundum superparticularem comparationem habitudinemque vocabitur.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 1:12)
Videbis igitur hoc facto in minorem modum summas reverti et ad principaliorem habitudinem comparationes proportionesque reduci, ut si sit quadrupla proportio, primo ad triplam, inde ad duplam, inde ad aequalitatem usque remeare;
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:13)
sed ex tertio, id est ex lxxij, aufer primum, id est viij et duos secundos, id est bis xvj, et erit reliqua pars xxxij, quibus positis ad duplas proportiones habitudo redigitur:
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 3:7)
Dicunt enim omnes omnium rerum substantias constare ex ea, quae propriae suaeque semper habitudinis est nec ullo modo permutatur, et ea scilicet natura, quae variabilis motus est sortita substantiam.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:3)
Unde nunc nobis monstrandum est, hac gemina numerorum natura, quadratorum scilicet et parte altera longiorum cunctas numeri species cunctasque habitudines vel ad aliquid relatae quantitatis, ut multiplicium vel superparticularium et ceterorum, vel ad se ipsam consideratae, ut formarum, quas dudum in superiore disputatione descripsimus, informari, ut, quemadmodum mundus ex inmutabili mutabilique substantia, sic omnis numerus ex tetragonis, qui inmutabilitate perficiuntur, et ex parte altera longioribus, qui mutabilitate participiant, probetur esse coniunctus.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:8)
Necesse est, inquit, omnia quae sunt vel infinita esse vel finita, demonstrare scilicet volens, omnia, quaecunque sunt, ex his duobus consistere, aut ex finita scilicet esse aut ex infinita, ad numeri sine dubio similitudinem.
(보이티우스, De Arithmetica, Liber secundus, Quod omnia ex eiusdem natura et alterius natura consistant idque in numeris primum videri 1:12)
Horum igitur si primum compares primo, dupli quantitas invenitur, quae est prima multiplicitatis species, si vero secundum secundo hemioliae quantitatis habitudo producitur, si tertium tertio sesquitertia proportio procreatur, si quartum quarto, sesquiquarta, et si quintum quinto, sesquiquinta, et hinc superparticularium normam in quamvis longissimum spatium progrediens integram inoffensamque repperies, ita ut in prima dupli proportione unitatis solius sit differentia, duo namque ab uno sola semper discrepant unitate.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 4:1)
Rursus si ij ad iiij speculeris, dupla est proportio, si iiij ad vj, habitudinem sesqualteram recognosces.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 1:7)
proportionalitas est duarum vel plurium proportionum similis habitudo, etiamsi non eisdem quantitatibus et differentiis constitutae sint.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:5)
Proportio est duorum terminorum ad se invicem quaedam habitudo et quasi quodammodo continentia, quorum compositio quod efficit, proportionale est. Ex iunctis enim proportionibus proportionalitas fit. In tribus autem terminis minima proportionalitas invenitur.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:7)
Sin vero alius ad unum refertur terminus, alius vero ad alium, necesse est habitudinem disiunctam vocari, ut ad qualitatem quidem proportionis sunt:
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:17)
Post quas proportionum habitudines tres aliae sunt, quae sine nomine feruntur quidem, vocantur autem quarta, quinta, sexta, quae superius dictis oppositae sunt.
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:3)

SEARCH

MENU NAVIGATION