라틴어 문장 검색

Ut lxiiij numerus habet medietatem xxxij, hic autem medietatem xvi, hic vero viij.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 1:2)
Sunt enim duabus in latitudine medietatibus aequales duae extremitates vel una medietate duae duplices extremitates.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 6:2)
ita quoque datis duobus numeris nunc quidem arithmeticam nunc vero geometricam nunc autem armonicam medietatem experiamur inserere, ut rectum propriumque medietatis nomen sit, quod manentibus extremitatibus huc atque illuc ferri permutarique videatur.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:2)
Duae vero aliae medietates, quinta scilicet et sexta geometricae medietati contrariae sunt et eidem videntur oppositae.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 2:1)
At vero ubi duo altrinsecus parte altera longiores unum medium tetragonum claudunt, omnes ex his qui fiunt tetragoni a paribus producuntur.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 39:8)
Rursus si inter eosdem x et xl xx constituam, statim geometrica medietas cum suis proprietatibus cunctis exoritur, arithmetica medietate pereunte.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 2:1)
Hic ergo tetragonus cum parte altera longiore atque hic cum sequente tetragono eadem proportione iunguntur, differentiis vero non isdem.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 1:5)
Nunc vero de proportionalitatibus deque medietatibus dicendum est, et primum quidem de ea medietate tractabimus, quae secundum quantitatis aequalitatem neglecta proportionis parilitate constitutorum terminorum habitudines servat.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:1)
Habet autem aliam proprietatem armonica medietas, ut cum duas extremitates in unum redactas medietas multiplicaverit, dupla quantitas colligatur, quam si se multiplicent duae extremitates.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:18)
At vero si fuerint medietas et duplus, inter duplicem et medium potest una medietas talis inveniri, quae ad alteram extremitatem sesqualtera sit, ad alteram sesquitertia.
(보이티우스, De Arithmetica, Liber secundus, Quod multiplex intervallum ex quibus superparticularibus medietate posita intervallis fiat eiusque inveniendi regula. 2:2)
Unum enim si respexeris, primus potestate tetragonus est. Sin vero unum tribus coacervaveris, quattuor tetragonus exoritur.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:7)
In hac enim dispositione armonica, quae est ij iij vj ternarius binarium tertia sui parte vincit, idem ternarius a senario tota sui quantitate superatur, id est tribus, idemque ipse ternarius medietate minoris vincit minorem, id est uno, et medietate maioris a maiore termino vincitur, id est tribus.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:15)
Si ad latitudinem respicias, ubi est duorum terminorum una medietas, ipsosque terminos iungas, duplos eos medietate propria repperies, ut xxxvj et xx faciunt lvj, quorum medietas est xxviij, qui medius est inter eos terminus constitutus.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 1:2)
et rursus, quod ex duobus altrinsecus tetragonis et uno medio longilatero bis facto nascitur, ipse quoque tetragonus sit;
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:12)
Tot autem necesse est unitates cybus habeat in latere, quot habuit primus ille tetragonus, ex quo ipse productus est. Nam quoniam quattuor tetragonus duos tantum numeros habet in latere, duos quoque habet octonarius cybus.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:12)

SEARCH

MENU NAVIGATION