라틴어 문장 검색

erit I + nQ vera inclinatio Plani Trajectoriae ad Planum Eclipticae, & K + mP vera longitudo Nodi.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 42 6:5)
Ac denique si in operatione prima, secunda ac tertia, quantitates R, r & [rho] designent Latera recta Trajectoriae, & quantitates 1 ÷ L, 1 ÷ l, 1 ÷ [lambda] ejusdem Latera transversa respectivè:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 42 6:6)
erit R + mr - mR + n[rho] - nR verum Latus rectum, & 1 ÷ {L + ml - mL + n[lambda] - nL} verum Latus transversum Trajectoriae quàm Cometa describit.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 42 6:7)
nam quid, inquiunt, ad agendam causam dicendamve sententiam pertinet, scire, quemadmodum data linea constitui triangula aequis lateribus possint?
(퀸틸리아누스, 변론 가정 교육, Liber I 334:1)
ideoque illa circumcurrens linea si efficiet orbem, quae forma est in planis maxime perfecta, amplius spatium complectetur quam si quadratum paribus oris efficiat, rursus quadrata triangulis, triangula ipsa plus aequis lateribus quam inaequalibus.
(퀸틸리아누스, 변론 가정 교육, Liber I 372:1)
Triangulus in tres triangulos divisus.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:9)
Et ad faciendas quidem pyramidas a triangulo ipsi nobis trianguli componendi sunt;
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:5)
Cum autem [xi]O sit ad SO ut 3 ad 1 & EO ad YO prope in eadem ratione, erit SY ipsi EB parallela quamproximè, & propterea triangulum SEB, triangulo YEB quamproximè aequale.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 46:3)
Transit autem haec figura per punctum P, eo quod triangulum PSH simile sit triangulo psh;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 23:7)
Ideoque cum triangulum ASE sit ad triangulum ASC in eadem ratione, erit area tota ASEY ad aream totam ASCY ut AE ad AC quamproximè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 46:2)
quadratus in quattuor triangulos divisus, pentagonus in v triangulos divisus, exagonus in sex triangulos divisus.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:6)
Sit S centrum virium, SC distantia minima centri hujus a plano dato, P corpus de loco P secundum rectam PZ egrediens, Q corpus idem in Trajectoria sua revolvens, & PQR Trajectoria illa in plano dato descripta, quam invenire oportet.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 4:1)
Curvatura Trajectoriae, quam mobile, si secundum Trajectoriae illius perpendiculum trahatur, describit, est ut attractio directè & quadratum velocitatis inversè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 40:1)
Unde si ad aream ASEY addatur triangulum EYB, & de summa auferatur triangulum SEB, manebit area ASBY areae ASEY aequalis quamproximè, atque adeo ad aream ASCY ut AE ad AC.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 46:4)
Omnes enim tetragoni, qui sub triangulis sunt naturali ordinatione dispositi, ex superioribus triangulis procreantur illorumque collectione quadrati figura componitur.
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:2)

SEARCH

MENU NAVIGATION