라틴어 문장 검색

Et componendo fit summa particularum omnium tDv in Sectore ADt, ut summa particularum temporis singulis velocitatis decrescentis Ap particulis amissis pq respondentium, usq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 50:13)
id est (si TX & AP parallelae sint) ut DXq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 51:5)
Et componendo fit summa particularum temporis, quibus omnes velocitatis AP particulae PQ generantur, ut summa particularum Sectoris ADT, id est tempus totum ut Sector totus. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 51:27)
Nam cum sit AC ad AP ut AP ad AK, erit 2APQ aequale AC × KL (per Corol. 1. Lem. II.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 52:3)
, ut AP ad AC;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 52:9)
Nam velocitas in Medio non resistente foret ut tempus ATD, & in Medio resistente est ut AP, id est ut triangulum APD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 54:3)
Eodem argumento velocitas in ascensu est ad velocitatem, qua corpus eodem tempore in spatio non resistente omnem suum ascendendi motum amittere posset, ut triangulum ApD ad Sectorem circularem AtD, sive ut recta Ap ad arcum At.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 55:2)
Est igitur tempus quo corpus in Medio resistente cadendo velocitatem AP acquirit, ad tempus quo velocitatem maximam AC in spatio non resistente cadendo acquirere posset, ut Sector ADT ad triangulum ADC:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 56:2)
dabitur tum velocitas AP vel Ap, tum area ABKN vel ABkn, quae est ad Sectorem ut spatium quaesitum ad spatium jam ante inventum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 57:9)
Proinde si corpus de loco A secundum rectam AH projectum describat Hyperbolam AGK, & AH producta occurrat Asymptoto NX in H, actaq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 92:1)
A & intervallo AH describatur Circulus secans Hyperbolam illam in puncto H;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 102:6)
& projectile secundum rectam AH emissum incidet in punctum K. Q. E. I. Nam punctum H, ob datam longitudinem AH, locatur alicubi in circulo descripto.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 102:7)
Incidit ergo punctum H in Hyperbolam Asymptotis AK, KF descriptam, cujus conjugata transit per punctum C, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 102:10)
ex duabus intersectionibus H, H duo prodeunt anguli NAH, NAH, quorum minor eligendus est;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 102:13)
In ea detur punctum A, & capiatur segmentum AP velocitati proportionale.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 18:3)

SEARCH

MENU NAVIGATION