라틴어 문장 검색

Sit MX Asymptotos altera, ordinatim applicatae DG productae occurrens in V, & ex natura Hyperbolae, rectangulum XV in VG dabitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 78:1)
& completo parallelogrammo DNXZ, dicatur BN a, BD o, NX c, & ratio data VZ ad ZX vel DN ponatur esse m ÷ n.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 78:4)
Hujus seriei terminus secundus {m ÷ n}o - {bb ÷ aa}o usurpandus est pro Qo, tertius cum signo mutato {bb ÷ a^3}o^2 pro Ro^2, & quartus cum signo etiam mutato {bb ÷ a^4}o^3 pro So^3, eorumq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 78:8)
coefficientes m ÷ n - bb ÷ aa, bb ÷ a^3 & bb ÷ a^4 scribendae sunt, in Regula superiore, pro Q, R & S. Quo facto prodit medii densitas ut
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 78:9)
bb --- a^4 1 ------------------------------ seu ------------------------------ --------------------- ------------------------- bb / mm 2mbb b^4 / mm 2mbb b^4 -- / 1 - -- - ---- + --- / aa + -- aa - ---- + ---- a^3\/ nn naa a^4 \/ nn n aa
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 79:1)
aa & {mm ÷ nn}aa - 2mbb ÷ n + b^4 ÷ aa sunt ipsarum XZ & ZY quadrata.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 80:2)
& corpus de loco A justa cum velocitate emissum describet Hyperbolam illam AGK. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 80:8)
Resolvatur terminus ille bb ÷ {A - O}^n in seriam infinitam
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 82:3)
si in VZ capiatur VY aequalis n × VG, est reciproce ut XY.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 88:2)
Sunt enim A^2 & {dd ÷ ee}A^2 - 2dnbb ÷ eA^n in A + nnb^4 ÷ A^{2n} ipsarum XZ & ZY quadrata.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 88:3)
Resistentia autem in eodem loco G fit ad Gravitatem ut S in XY ÷ A ad 2RR, id est XY ad {{3nn + 3n} ÷ {n + 2}}VG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 88:4)
÷ {{nn + n} in VG} habente. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 88:6)
Quoniam motus non fit in Parabola nisi in Medio non resistente, in Hyperbolis vero hic descriptis fit per resistentiam perpetuam;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 90:1)
perspicuum est quod linea, quam Projectile in Medio uniformiter resistente describit, propius accedit ad Hyperbolas hasce quam ad Parabolam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 90:2)
in partibus a vertice remotioribus propius ad ipsas accedit quam pro ratione Hyperbolarum quas hic descripsi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 90:5)

SEARCH

MENU NAVIGATION