라틴어 문장 검색

annulus autem iste est ut rectangulum sub radio AE & latitudine Ee, & hoc rectangulum (ob proportionales PE & AE, Ee & cE) aequatur rectangulo PE × cE seu PE × Ff;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 26:3)
) longitudo FK vi qua corpusculum P in circulum illum attrahitur proportionalis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 33:3)
Ergo vis huic areae proportionalis est ut AB - PE + PD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 34:11)
& Conorum particulae Sphaeroidum superficiebus abscissae DHKF, GLIE, ob aequalitatem linearum DH, EI, erunt ad invicem ut quadrata distantiarum suarum a corpusculo P, & propterea corpusculum illud aequaliter trahent.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 40:11)
aequaliter trahent corpus P in partes contrarias.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 40:13)
Si solidum ex una parte planum, ex reliquis autem partibus infinitum, constet ex particulis aequalibus aequaliter attractivis, quarum vires in recessu a solido decrescunt in ratione potestatis cujusvis distantiarum plusquam quadraticae, & vi solidi totius corpusculum ad utramvis plani partem constitutum trahatur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 45:1)
In plano mHM capiatur longitudo HM ipsi CH^{n - 2} reciproce proportionalis, & erit vis illa ut HM.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 47:10)
reciproce proportionales;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 47:14)
hujus termino in quo O duarum est dimensionum, id est termino {mm - mn} ÷ 2nn O^2 A^{(m - 2n)÷n} vim proportionalem esse suppono.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 56:2)
Sed in omni triangulo LMI, sinus angulorum sunt proportionales lateribus oppositis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 4:24)
Verum (ob proportionales BG ad CE & M - N ad N) est etiam CE + BG ad CE ut M ad N:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 27:10)
Sunt ergo velocitates differentiis suis proportionales, & propterea (per Lem. I. Lib. II.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 10:3)
) continue proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 10:4)
Componuntur autem horum terminorum rationes ex aequalibus rationibus terminorum intermediorum aequaliter repetitis, & propterea sunt aequales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 10:6)
Igitur velocitates his terminis proportionales, sunt in progressione Geometrica.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 10:7)

SEARCH

MENU NAVIGATION